首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2650篇
  免费   137篇
  国内免费   1篇
  2021年   24篇
  2020年   15篇
  2019年   13篇
  2018年   27篇
  2017年   26篇
  2016年   38篇
  2015年   77篇
  2014年   82篇
  2013年   144篇
  2012年   140篇
  2011年   153篇
  2010年   92篇
  2009年   99篇
  2008年   166篇
  2007年   152篇
  2006年   137篇
  2005年   148篇
  2004年   164篇
  2003年   164篇
  2002年   174篇
  2001年   59篇
  2000年   45篇
  1999年   55篇
  1998年   39篇
  1997年   35篇
  1996年   25篇
  1995年   26篇
  1994年   25篇
  1993年   21篇
  1992年   46篇
  1991年   36篇
  1990年   21篇
  1989年   36篇
  1988年   34篇
  1987年   13篇
  1986年   19篇
  1985年   23篇
  1984年   32篇
  1983年   16篇
  1982年   19篇
  1981年   18篇
  1980年   8篇
  1979年   10篇
  1978年   8篇
  1976年   12篇
  1975年   7篇
  1973年   7篇
  1972年   10篇
  1971年   6篇
  1970年   6篇
排序方式: 共有2788条查询结果,搜索用时 109 毫秒
141.
During development, mitral cell axons, the major efferents of the olfactory bulb, exhibit a protracted waiting period in the lateral olfactory tract (LOT) before giving off collateral branches and innervating the target olfactory cortex. To investigate the target invasion mechanism, a series of heterochronic and heterotopic cocultures of olfactory bulbs with various olfactory cortical strips were conducted. These experiments indicated that development of collateral branches is triggered by environmental cues but not by intrinsic mechanisms in mitral cells. The collateral-inducing cues are apparently different from the cues directing outgrowth of primary mitral cell axons. Coculture experiments also indicated that the target olfactory cortex undergoes a developmental change to become accessible to mitral cell fibers. Primary mitral cell axons, however, still preferred the LOT position over such accessible piriform cortex when encountered both the locations. These results suggest that mitral cell projection comprises multiple steps which are controlled by various environmental cues.  相似文献   
142.
Bis(picolinato)oxovanadium(IV) [VO(pic)2] is one of the most potent insulin-mimetic vanadium complexes. To probe coordination structural changes of this complex in vivo and provide insights into the origin of its high potency, an electron spin-echo envelope modulation (ESEEM) study was performed on organs (kidney, liver and bone) of VO(pic)2- and VOSO4-treated rats. Kidney and liver samples from both types of rats exhibited a 14N ESEEM signal that could be attributed to equatorially coordinating amine nitrogen. The relative intensity of the amine signal was larger for the organs of the rat treated with the less potent VOSO4, suggesting that this amine coordination inhibits the insulin-mimetic activity. The spectra of kidney and liver from the VO(pic)2-treated rat contained a weak signal due to the picolinate imine nitrogen. This suggests that some picolinato species (including both the bispicolinato and a partially decomposed monopicolinato species) still exist in the organs as a minor species, where the proportions of the picolinato species to the total amount of the EPR-detectable VIVO species are estimated as 8-16% in the kidney and 12-24% in the liver. The picolinate ligand presumably serves to prevent VO2+ from being converted into the inactive amine-coordinated species. Bone samples from both types of rats exhibited an ESEEM signal due to 31P nuclei. The VO2+ in bone is therefore most likely incorporated into the hydroxyapatite Ca10(PO4)6(OH)2 matrix, which is consistent with the hypothesis that the bone-accumulated VO2+ is gradually released and transported to other organs as is Ca2+. No 14N signals were observed, even in the bone samples of the VO(pic)2-treated rats, indicating that vanadium uptake by bone requires complete decomposition of the complex.  相似文献   
143.
144.
We have isolated a novel gene, charon, that encodes a member of the Cerberus/Dan family of secreted factors. In zebrafish, Fugu and flounder, charon is expressed in regions embracing Kupffer's vesicle, which is considered to be the teleost fish equivalent to the region of the mouse definitive node that is required for left-right (L/R) patterning. Misexpression of Charon elicited phenotypes similar to those of mutant embryos defective in Nodal signaling or embryos overexpressing Antivin(Atv)/Lefty1, an inhibitor for Nodal and Activin. Charon also suppressed the dorsalizing activity of all three of the known zebrafish Nodal-related proteins (Cyclops, Squint and Southpaw), indicating that Charon can antagonize Nodal signaling. Because Southpaw functions in the L/R patterning of lateral plate mesoderm and the diencephalon, we asked whether Charon is involved in regulating L/R asymmetry. Inhibition of Charon's function by antisense morpholino oligonucleotides (MOs) led to a loss of L/R polarity, as evidenced by bilateral expression of the left side-specific genes in the lateral plate mesoderm (southpaw, cyclops, atv/lefty1, lefty2 and pitx2) and diencephalon (cyclops, atv/lefty1 and pitx2), and defects in early (heart jogging) and late (heart looping) asymmetric heart development, but did not disturb the notochord development or the atv/lefty1-mediated midline barrier function. MO-mediated inhibition of both Charon and Southpaw led to a reduction in or loss of the expression of the left side-specific genes, suggesting that Southpaw is epistatic to Charon in left-side formation. These data indicate that antagonistic interactions between Charon and Nodal (Southpaw), which take place in regions adjacent to Kupffer's vesicle, play an important role in L/R patterning in zebrafish.  相似文献   
145.
We fabricated a self-assembled monolayer (SAM) of a chimeric protein created as a novel model protein for an artificial light-harvesting complex (LHC) composed of two proteins, cytochrome b(562) (cytb(562)) mutated for SAM fabrication (cytb(562), N22C, G82C) and enhanced green fluorescent protein (EGFP). The SAM formation of chimeric protein on a single-crystalline Au(111) substrate was confirmed by atomic force microscopy (AFM) measurement. The rectified photocurrent of the chimeric protein SAM on a gold substrate was detected by light-illumination scanning tunneling microscopy (LI-STM) co-operated with a lock-in technique. The photocurrent generation of the chimeric protein SAM was wavelength-specific to the light-illumination (488 nm), which indicated that the EGFP part of the chimera plays a role as a sensitizer in the photo-induced electron transfer process.  相似文献   
146.
The cation/proton antiporter 2 (CPA2) family is a large family of cation transporters and putative channel proteins that are found in bacteria, archaea as well as eukaryotes. Consistent with a K+ efflux capacity that is found in several other CPA2 proteins, it is shown here that the YhaU protein of Bacillus subtilis greatly increased the concentration of K+ required for growth of a K+ uptake-defective mutant of Escherichia coli. No YhaU-dependent K+(Na+)/H+ antiport activity was found in membrane vesicles. Two genes, yhaS and yhaT, are located upstream of yhaU and form an apparent operon with it. The YhaS protein has no reported homologues while the YhaT protein has sequence similarity to a sub-domain of KTN proteins that are associated with potassium-translocating channels and transporters. YhaT and the C-terminal region of YhaS were shown to modulate the K+ transport capacities of YhaU in complementation experiments. Expression studies, conducted by monitoring the beta-galactosidase levels in pMutin-disrupted mutants of the yhaU locus, indicated that yhaU is strongly induced by alkaline pH- plus salt-induced stress and that there are additional sodium-specific responses of yhaS and yhaT.  相似文献   
147.
The operon encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the cyanobacterium Synechococcus sp. PCC7002 contains three rbc genes, rbcL, rbcX and rbcS, in this order. Introduction of translational frameshift into the rbcX gene resulted in a significant decrease in the production of large (RbcL) and small (RbcS) subunits of the Rubisco protein in Synechococcus sp. PCC7002 and in Escherichia coli. To investigate the function of the rbcX gene product (RbcX), we constructed the expression plasmid for the rbcX gene and examined the effects of RbcX on the recombinant Rubisco production in Escherichia coli. The coexpression experiments revealed that RbcX had marked effects on the production of large and small subunits of Rubisco without any significant influence on the mRNA level of rbc genes and/or the post-translational assembly of the Rubisco protein. The present rbcX coexpression system provides a novel and useful method for investigating the Rubisco maturation pathway.  相似文献   
148.
The gene, pixJ1 (formerly pisJ1), is predicted to encode a phytochrome-like photoreceptor that is essential for positive phototaxis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 [Yoshihara et al. (2000) Plant Cell Physiol. 41: 1299]. The PixJ1 protein was overexpressed as a fusion with a poly-histidine tag (His-PixJ1) and isolated from Synechocystis cells. A zinc-fluorescence assay suggested that a linear tetrapyrrole was covalently attached to the His-PixJ1 protein as a chromophore. His-PixJ1 showed novel photoreversible conversion between a blue light-absorbing form (Pb, lambdaAmax=425-435 nm) and a green light-absorbing form (Pg, lambdaAmax=535 nm). Dark incubation led Pg to revert to Pb, indicative of stability of the Pb form in darkness. Red or far-red light irradiation, which is effective for photochemical conversion of the known phytochromes, produced no change in the spectra of Pb and Pg forms. Site-directed mutagenesis revealed that a Cys-His motif in the second GAF domain of PixJ1 is responsible for binding of the chromophore. Possible chromophore species are discussed with regard to the novel photoconversion spectrum.  相似文献   
149.
We examined the effect of inhibition of Na+/H+ exchange (NHE) on duodenal bicarbonate secretion (DBS) in rats to further understand DBS regulation. DBS was measured by using the pH-stat method and by using CO2-sensitive electrodes. 5-(N,N-dimethyl)-amiloride (50 microM; DMA), a concentration that selectively inhibits the NHE isoforms NHE1 and NHE2, but not NHE3, did not affect DBS. Nevertheless, 3 mM DMA, a higher concentration that inhibits NHE1, NHE2, and NHE3, significantly increased DBS. Moreover, S1611 and S3226, both specific inhibitors of NHE3 only, or perfusion with Na+-free solutions, dose dependently increased DBS, as measured by pH-stat and CO2-sensitive electrode, without affecting intracellular pH. Coperfusion with 0.1 microM indomethacin, 0.5 mM DIDS, or 1 mM methazolamide did not affect S3226-induced DBS. Nevertheless, coperfusion with 0.1 and 0.3 mM 5-nitro-2-(3-phenylpropylamino) benzoic acid, which inhibits the cystic fibrosis transmembrane conductor regulator (CFTR), dose dependently inhibited S3226-induced DBS. In conclusion, only specific apical NHE3 inhibition increased DBS, whereas prostaglandin synthesis, Na+-HCO3- cotransporter activation, or intracellular HCO3- formation by carbonic anhydrase was not involved. Because NHE3 inhibition-increased DBS was inhibited by an anion channel inhibitor and because reciprocal CFTR regulation has been previously shown between NHE3 and apical membrane anion transporters, we speculate that NHE3 inhibition increased DBS by altering anion transporter function.  相似文献   
150.
Mori M  Fujino M 《Peptides》2004,25(10):1815-1818
Urotensin II (UII) is a piscine neuropeptide originally isolated from the teleost urophysis. The existence of UII in mammals has been demonstrated by cloning of the mammalian orthologs of UII precursor protein genes. While rat and mouse orthologs have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack the typical processing sites in the amino-terminal region of the mature peptides. A novel peptide, UII-related peptide (URP), was discovered by monitoring UII-immunoreactivity in the rat brain, and its amino acid sequence was determined to be ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and showed that the sequences of mouse and human URP peptides are identical to that for rat URP. URP was found to bind and activate the human or rat urotensin II receptors [GPR14, UT receptor (UTR)] and showed a hypotensive effect when administrated to anesthetized rats. The prepro-URP gene is expressed in several rat tissues, although with lower levels than the prepro-UII gene and, in the human, is expressed comparably to prepro-UII in several tissues except the spinal cord. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号