首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2763篇
  免费   186篇
  国内免费   2篇
  2022年   14篇
  2021年   38篇
  2020年   12篇
  2019年   22篇
  2018年   62篇
  2017年   28篇
  2016年   44篇
  2015年   81篇
  2014年   96篇
  2013年   163篇
  2012年   178篇
  2011年   158篇
  2010年   129篇
  2009年   119篇
  2008年   163篇
  2007年   192篇
  2006年   188篇
  2005年   162篇
  2004年   173篇
  2003年   147篇
  2002年   188篇
  2001年   42篇
  2000年   36篇
  1999年   49篇
  1998年   48篇
  1997年   35篇
  1996年   29篇
  1995年   17篇
  1994年   23篇
  1993年   24篇
  1992年   22篇
  1991年   17篇
  1990年   16篇
  1989年   23篇
  1988年   22篇
  1987年   22篇
  1986年   14篇
  1985年   18篇
  1984年   17篇
  1983年   10篇
  1982年   16篇
  1981年   12篇
  1980年   10篇
  1979年   12篇
  1978年   12篇
  1975年   8篇
  1971年   4篇
  1970年   5篇
  1969年   4篇
  1968年   4篇
排序方式: 共有2951条查询结果,搜索用时 835 毫秒
981.
982.
Tandem zinc finger (TZF) proteins are characterized by two zinc-binding CCCH motifs arranged in tandem. Human TZFs such as tristetraproline (TTP) bind to and trigger the degradation of mRNAs encoding cytokines and various regulators. Although the molecular functions of plant TZFs are unknown, recent genetic studies have revealed roles in hormone-mediated growth and environmental responses, as well as in the regulation of gene expression. Here we show that expression of AtTZF1 (AtCTH/AtC3H23) mRNA is repressed by a hexokinase-dependent sugar signaling pathway. However, AtTZF1 acts as a positive regulator of ABA/sugar responses and a negative regulator of GA responses, at least in part by modulating gene expression. RNAi of AtTZF1-3 caused early germination and slightly stress-sensitive phenotypes, whereas plants over-expressing AtTZF1 were compact, late flowering and stress-tolerant. The developmental phenotypes of plants over-expressing AtTZF1 were only partially rescued by exogenous application of GA, implying a reduction in the GA response or defects in other mechanisms. Likewise, the enhanced cold and drought tolerance of plants over-expressing AtTZF1 were not associated with increased ABA accumulation, suggesting that it is mainly ABA responses that are affected. Consistent with this notion, microarray analysis showed that over-expression of AtTZF1 mimics the effects of ABA or GA deficiency on gene expression. Notably, a gene network centered on a GA-inducible and ABA/sugar-repressible putative peptide hormone encoded by GASA6 was severely repressed by AtTZF1 over-expression. Hence AtTZF1 may serve as a regulator connecting sugar, ABA, GA and peptide hormone responses.  相似文献   
983.
Inhibition of advanced glycation end-product (AGE) formation is a potential strategy for the prevention of clinical diabetes complications. Screening for new AGE inhibitors revealed several natural compounds that inhibited the formation of N(ε)-(carboxymethyl)lysine (CML), a major antigenic AGE structure, whereas natural compounds containing a catechol group, such as gallic acid and epicatechin, significantly enhanced CML formation. A similar enhancing effect was also observed by culturing THP-1 macrophages in the presence of catechol compounds. Although 4-methylcatechol significantly enhanced CML formation from glycated HSA (gHSA), a model for Amadori proteins, analogues of catechol such as 5-methylresorcinol and methylhydroquinone showed no enhancing effect. Even though 1mM 4-methylcatechol, epicatechin, and gallic acid significantly enhanced CML formation from gHSA, it was significantly inhibited by decreasing their concentration. The enhancing effect of 1mM catechol compounds was inhibited in the presence of the glutathione peroxidase system, thus demonstrating that hydrogen peroxide generated from catechol compounds plays an important role in the enhancement of CML formation. Furthermore, administration of 500mg/kg/day epicatechin to STZ-induced diabetic mice for 45days enhanced CML accumulation at the surface area of gastric epithelial cells in the stomach. This study provides the first evidence that high amounts of catechol-containing structures enhance oxidative stress, thus leading to enhanced CML formation, and this phenomenon may explain the paradoxical effect that some flavonoids have on redox status.  相似文献   
984.
The activation of peroxisome-proliferator-activated receptor-γ (PPARγ), which plays a central role in adipocyte differentiation, depends on ligand-dependent co-activator recruitment. In this study, we developed a novel method of PPARγ ligand screening by measuring the increase in fluorescent polarization accompanied by the interaction of a fluorescent co-activator and PPARγ. Sterol receptor co-activator-1 (SRC-1), a major PPARγ co-activator, was probed by fluorescent TAMRA by the Amber codon fluorescence probe method. Polarization was increased by adding PPARγ ligands to a solution containing labeled SRC-1 (designated TAMRA-SRC-S) and PPARγ. The disassociation constants (Kd) of the PPARγ synthesized ligands, pioglitazone (221 nM), troglitazone (83.0 nM), and 15-deoxy-Δ12,14-prostaglandin J(2) (15d-ΔPGJ(2)) (156 nM), were determined by this method. Farnesol (2.89 μM) and bixin (21.1 μM), which we have reported to be PPARγ ligands, increased the fluorescent polarization. Their Kd values were in agreement with the ED(50) values obtained in the luciferase assay. The results indicate that the method is valuable for screening natural PPARγ ligands.  相似文献   
985.
We investigated whether replicative senescence of endothelial cells contributed to the pathogenesis of atherosclerosis in human umbilical vein endothelial cells (HUVECs). HUVECs at a population-doubling level of 30 (PDL30) divided much more slowly than those at PDL9. The percentage of SA-β-Gal-positive cells and the mRNA expression levels of PAI-1 and p21 at PDL30 were significantly higher than those at PDL9. The changes induced by aging were evaluated according to the mRNA expression level of genes related to the endothelial cell function. The expression level of many adhesion molecules promoting monocytic adhesion was significantly increased, and monocytic adhesion on HUVECs was found to be significantly promoted by aging. Monocytic adhesion is an essential early event in the development of atherosclerosis, and our results suggest that replicative senescence of the vascular endothelial cells induced increased expression of adhesion molecules. The consequent increase in monocytic adhesion may then promote the pathogenesis of atherosclerosis.  相似文献   
986.
The design and synthesis of dehydroxymethylepoxyquinomicin (DHMEQ) derivatives were carried out to investigate the intracellular targets. The synthetic biotin probe exhibited membrane permeability and combined selectively with the target protein p65.  相似文献   
987.
Vascular endothelial growth factor (VEGF) is vital to physiological as well as pathological angiogenesis, and regulates a variety of cellular functions, largely by activating its 2 receptors, fms-like tyrosine kinase (Flt1) and kinase domain receptor (KDR). KDR plays a critical role in the proliferation of endothelial cells by controlling VEGF-induced phospholipase Cγ-protein kinase C (PLCγ-PKC) signaling. The function of Flt1, however, remains to be clarified. Recent evidence has indicated that Flt1 regulates the VEGF-triggered migration of endothelial cells and macrophages. Here, we show that RACK1, a ubiquitously expressed scaffolding protein, functions as an important regulator of this process. We found that RACK1 (receptor for activated protein kinase C 1) binds to Flt1 in vitro. When the endogenous expression of RACK1 was attenuated by RNA interference, the VEGF-driven migration was remarkably suppressed whereas the proliferation was unaffected in a stable Flt1-expressing cell line, AG1-G1-Flt1. Further, we demonstrated that the VEGF/Flt-mediated migration of AG1-G1-Flt1 cells occurred mainly via the activation of the PI3 kinase (PI3K)/Akt and Rac1 pathways, and that RACK1 plays a crucial regulatory role in promoting PI3K/Akt-Rac1 activation.  相似文献   
988.
Invasive stage embryos of the parasitic wasp Copidosoma floridanum transmigrate through the epithelium of phylogenetically distant host embryos in a manner that is similar to mammalian leukocyte infiltration. Host embryonic cells appear to recognize the invading wasp embryo by components on the cell surface. We developed an in vitro wasp entry inhibition assay and found that C-type lectins of the wasp embryo bound to N-linked carbohydrate chains with fucose residues on the surface of host embryo. This is the first report showing a receptor-ligand interaction between heterologous multicellular organisms.  相似文献   
989.
The photoperiodic response is one of the adaptation mechanisms to seasonal changes of lengths of day and night. The circadian clock plays pivotal roles in this process. In Arabidopsis, LHY, CCA1, ELF3, and other clock proteins play major roles in maintaining circadian rhythms. lhy;cca1 double mutants with severe defects in circadian rhythms showed accelerated flowering under short days (SDs), but delayed flowering under continuous light (LL). The protein level of the floral repressor SVP increased in lhy;cca1 mutants under LL, and the late-flowering phenotype of lhy;cca1 mutants was partially suppressed by svp, flc, or elf3. ELF3 interacted with both CCA1 and SVP, and elf3 suppressed the SVP accumulation in lhy;cca1 under LL. These results suggest that the unique mechanism of the inversion of the flowering response of lhy;cca1 under LL may involve both the ELF3-SVP/FLC-dependent and -independent pathways. In this work, elf3-1 seeds were mutagenized with heavy-ion beams and used to identify mutation(s) that delayed flowering under LL but not long days (LDs) or SDs even without ELF3. In this screening, seven candidate lines named suppressor of elf3 1 (self1), sel3, sel5, sel7, sel14, sel15, and sel20 were identified. Genetic analysis indicated that sel20 was a new deletion allele of a mutation in the blue light receptor, CRY2. A late-flowering phenotype and decrease of FT expression in the elf3;sel20 double mutant was obvious under LL but not under SDs or LDs. These results indicated that the late-flowering phenotype in the double mutant elf3;sel20 as well as in lhy;cca1 was affected by the presence of darkness. The results suggest that CRY2 may play more essential roles in the acceleration of flowering under LL than LDs or SDs.  相似文献   
990.
Allergic bronchopulmonary mycosis, characterized by excessive mucus secretion, airflow limitation, bronchiectasis, and peripheral blood eosinophilia, is predominantly caused by a fungal pathogen, Aspergillus fumigatus. Using DNA microarray analysis of NCI-H292 cells, a human bronchial epithelial cell line, stimulated with fungal extracts from A. fumigatus, Alternaria alternata, or Penicillium notatum, we identified a mucin-related MUC5AC as one of the genes, the expression of which was selectively induced by A. fumigatus. Quantitative RT-PCR, ELISA, and histochemical analyses confirmed an induction of mucin and MUC5AC expression by A. fumigatus extracts or the culture supernatant of live microorganisms in NCI-H292 cells and primary cultures of airway epithelial cells. The expression of MUC5AC induced by A. fumigatus extracts diminished in the presence of neutralizing Abs or of inhibitors of the epidermal growth factor receptor or its ligand, TGF-α. We also found that A. fumigatus extracts activated the TNF-α-converting enzyme (TACE), critical for the cleavage of membrane-bound pro-TGF-α, and its inhibition with low-molecular weight inhibitors or small interfering RNA suppressed the expression of MUC5AC. The protease activity of A. fumigatus extracts was greater than that of other fungal extracts, and treatment with a serine protease inhibitor, but not with a cysteine protease inhibitor, eliminated its ability to activate TACE or induce the expression of MUC5AC mRNA in NCI-H292. In conclusion, the prominent serine protease activity of A. fumigatus, which caused the overproduction of mucus by the bronchial epithelium via the activation of the TACE/TGF-α/epidermal growth factor receptor pathway, may be a pathogenetic mechanism of allergic bronchopulmonary mycosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号