首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2766篇
  免费   186篇
  国内免费   2篇
  2954篇
  2022年   17篇
  2021年   38篇
  2020年   12篇
  2019年   22篇
  2018年   62篇
  2017年   28篇
  2016年   44篇
  2015年   81篇
  2014年   96篇
  2013年   163篇
  2012年   178篇
  2011年   158篇
  2010年   129篇
  2009年   119篇
  2008年   163篇
  2007年   192篇
  2006年   188篇
  2005年   162篇
  2004年   173篇
  2003年   147篇
  2002年   188篇
  2001年   42篇
  2000年   36篇
  1999年   49篇
  1998年   48篇
  1997年   35篇
  1996年   29篇
  1995年   17篇
  1994年   23篇
  1993年   24篇
  1992年   22篇
  1991年   17篇
  1990年   16篇
  1989年   23篇
  1988年   22篇
  1987年   22篇
  1986年   14篇
  1985年   18篇
  1984年   17篇
  1983年   10篇
  1982年   16篇
  1981年   12篇
  1980年   10篇
  1979年   12篇
  1978年   12篇
  1975年   8篇
  1971年   4篇
  1970年   5篇
  1969年   4篇
  1968年   4篇
排序方式: 共有2954条查询结果,搜索用时 0 毫秒
91.
92.
Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-κB ligand (RANKL) in RA synoviocytes and CD4(+) T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4(+) T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4(+) T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-α in MH7A cells and CD4(+) T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4(+) T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.  相似文献   
93.
Hymenoscyphus fraxineus causes a lethal disease known as “ash dieback” in the common ash, Fraxinus excelsior, in Europe. It is hypothesized that the fungus originated from East Asia. This fungus is found on the leaf litter of the Manchurian ash, Fraxinus mandshurica, in Japan and is reported to produce apothecia on pseudosclerotial plates formed mainly on decomposing rachises. However, dieback disease has not been reported in Japan, and little is known about the life cycle of H. fraxineus. This study was conducted to explore the behavior and life cycle of this fungus. It was revealed that, after infection by ascospores, H. fraxineus endophytically inhabits the living leaves of F. mandshurica. On fallen leaves, the fungus behaves saprophytically, producing apothecia on pseudosclerotial plates formed mainly on the decomposing rachises. Analysis by real-time quantitative polymerase chain reaction (qPCR) revealed that the amount of H. fraxineus DNA sharply increased in rachises, while such sharp increase of DNA was not found in leaflets.  相似文献   
94.
Most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by polysaccharide polymerases called penicillin-binding proteins (PBPs). Because they are the targets of penicillin and related antibiotics, the structure and biochemical functions of the PBPs have been extensively studied. Despite this, we still know surprisingly little about how these enzymes build the PG layer in?vivo. Here, we identify the Escherichia coli outer-membrane lipoproteins LpoA and LpoB as essential PBP cofactors. We show that LpoA and LpoB form specific trans-envelope complexes with their cognate PBP and are critical for PBP function in?vivo. We further show that LpoB promotes PG synthesis by its partner PBP in?vitro and that it likely does so by stimulating glycan chain polymerization. Overall, our results indicate that PBP accessory proteins play a central role in PG biogenesis, and like the PBPs they work with, these factors are attractive targets for antibiotic development.  相似文献   
95.
By screening cDNA expression libraries derived from fresh leukemic cells of adult T-cell leukemia for the potential to transform murine fibroblasts, NIH3T3, we have identified a novel transforming gene, designated Tgat. Expression of Tgat in NIH3T3 resulted in the loss of contact inhibition, increase of saturation density, anchorage-independent growth in a semisolid medium, tumorigenicity in nude mice, and increased invasiveness. Sequence comparison revealed that an alternative RNA splicing of the Trio gene was involved in the generation of Tgat. The Tgat cDNA encoded a protein product consisting of the Rho-guanosine nucleotide exchange factor (GEF) domain of a multifunctional protein, TRIO, and a unique C-terminal 15-amino acid sequence, which were derived from the exons 38-46 of the Trio gene and a novel exon located downstream of its last exon (exon 58), respectively. A Tgat mutant cDNA lacking the C-terminal coding region preserved Rho-GEF activity but lost the transforming potential, indicating an indispensable role of the unique sequence. On the other hand, treatment of Tgat-transformed NIH3T3 cells with Y-27632, a pharmacological inhibitor of Rho-associated kinase, abrogated their transforming phenotypes, suggesting the coinvolvement of Rho-GEF activity. Thus, alternative RNA splicing, resulting in the fusion protein with the Rho-GEF domain and the unique 15 amino acids, is the mechanism generating the novel oncogene, Tgat.  相似文献   
96.
TRAP1 (tumor necrosis factor receptor-associated protein 1) is a member of the molecular chaperone HSP90 (90-kDa heat shock protein) family. In this study, we mainly examined the behavior of Dictyostelium TRAP1 homologue, Dd-TRAP1, during Dictyostelium development by immunoelectron microscopy. In vegetatively growing D. discoideum Ax-2 cells, Dd-TRAP1 locates in nucleolus and vesicles in addition to the cell cortex including cell membrane. Many of Dd-TRAP1 molecules moved to the mitochondrial matrix in response to differentiation, although Dd-TRAP1 on the cell membrane seems to be retained. Some Dd-TRAP1 was also found to be secreted to locate outside the cell membrane in Ax-2 cells starved for 6 h. At the multicellular slug stage, Dd-TRAP1 was primarily located in mitochondria and cell membrane in both prestalk and prespore cells. More importantly, in differentiating prespore cells, a significant number of Dd-TRAP1 locates in the PSV (prespore-specific vacuole) that is a sole cell type-specific organelle and essential for spore wall formation, whereas some Dd-TRAP1 in the cell cortical region of prestalk cells. These findings strongly suggest the importance of Dd-TRAP1 regulated temporally and spatially during Dictyostelium development. Incidentally, we also have certified that the glucose-regulated protein 94 (Dd-GRP94) is predominantly located in Golgi vesicles and cisternae, followed by its colocalization with Dd-TRAP1 in the PSV.  相似文献   
97.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second‐order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor‐evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle‐averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity. © 2003 Wiley Periodicals, Inc. J Neurobiol 58: 369–378, 2004  相似文献   
98.
Kinetics of unfolding and refolding of a staphylococcal nuclease mutant, in which Pro117 is replaced by glycine, have been investigated by stopped-flow circular dichroism, and the results are compared with those for the wild-type protein. In contrast to the biphasic unfolding of the wild-type nuclease, the unfolding of the mutant is represented by a single-phase reaction, indicating that the biphasic unfolding for the wild-type protein is caused by cis-trans isomerization about the prolyl peptide bond in the native state. The proline mutation also simplifies the kinetic refolding. Importance of the results in elucidating the folding mechanism is discussed.  相似文献   
99.

Background

Undertaking behavior is a significant adaptation to social life in enclosed nests. Workers are known to remove dead colony members from the nest. Such behavior prevents the spread of pathogens that may be detrimental to a colony. To date, little is known about the ethological aspects of how termites deal with carcasses.

Methodology and Principal Findings

In this study, we tested the responses to carcasses of four species from different subterranean termite taxa: Coptotermes formosanus Shiraki and Reticulitermes speratus (Kolbe) (lower termites) and Microcerotermes crassus Snyder and Globitermes sulphureus Haviland (higher termites). We also used different types of carcasses (freshly killed, 1-, 3-, and 7-day-old, and oven-killed carcasses) and mutilated nestmates to investigate whether the termites exhibited any behavioral responses that were specific to carcasses in certain conditions. Some behavioral responses were performed specifically on certain types of carcasses or mutilated termites. C. formosanus and R. speratus exhibited the following behaviors: (1) the frequency and time spent in antennating, grooming, and carcass removal of freshly killed, 1-day-old, and oven-killed carcasses were high, but these behaviors decreased as the carcasses aged; (2) the termites repeatedly crawled under the aging carcass piles; and (3) only newly dead termites were consumed as a food source. In contrast, M. crassus and G. sulphureus workers performed relatively few behavioral acts. Our results cast a new light on the previous notion that termites are necrophobic in nature.

Conclusion

We conclude that the behavioral response towards carcasses depends largely on the nature of the carcasses and termite species, and the response is more complex than was previously thought. Such behavioral responses likely are associated with the threat posed to the colony by the carcasses and the feeding habits and nesting ecology of a given species.  相似文献   
100.
Supraependymal cells, fibers and what are presumed to be neuronal bulb-like projections were found in the third ventricle of the domestic chicken with a scanning electron microscope. At least two types of supraependymal cells were found: neuron-like cells and phagocyte-like cells. The former were predominantly seen in the area of the paraventricular organ and infundibular recess. The latter were abundant on the ventricular surface of the median eminence and subfornical organ. Bulb or club-like projections thought to be the dendritic terminals of CSF-contacting neurons were observed in the area of the paraventricular organ and infundibular recess. Similar structures were observed at the preoptic recess as well. The supraependymal neuronal components found in the domestic chicken differed from those of mammals in several respects: 1. the wall of the third ventricle was devoid of supraependymal fibrous plexus except for that of the paraventricular organ; 2. bulb-like projections were abundant in the area of the paraventricular organ; 3. supraependymal neuron-like cells were unipolar or bipolar in appearance. These data underline the dissimilarity of the CSF-contacting neuronal system of birds and mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号