首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1412篇
  免费   192篇
  2022年   10篇
  2021年   29篇
  2020年   17篇
  2019年   37篇
  2018年   43篇
  2017年   34篇
  2016年   49篇
  2015年   66篇
  2014年   66篇
  2013年   77篇
  2012年   89篇
  2011年   78篇
  2010年   79篇
  2009年   57篇
  2008年   70篇
  2007年   78篇
  2006年   69篇
  2005年   58篇
  2004年   58篇
  2003年   41篇
  2002年   49篇
  2001年   26篇
  2000年   44篇
  1999年   28篇
  1998年   21篇
  1997年   9篇
  1996年   18篇
  1995年   10篇
  1994年   15篇
  1993年   12篇
  1992年   19篇
  1991年   22篇
  1990年   21篇
  1989年   17篇
  1988年   13篇
  1987年   9篇
  1986年   14篇
  1985年   15篇
  1984年   12篇
  1983年   8篇
  1982年   7篇
  1980年   9篇
  1977年   12篇
  1976年   8篇
  1975年   6篇
  1973年   8篇
  1972年   9篇
  1971年   5篇
  1969年   9篇
  1967年   7篇
排序方式: 共有1604条查询结果,搜索用时 15 毫秒
981.
Aquatic Ecology - Cyanobacteria have multifaceted ecological roles on coral reefs. Moorena bouillonii, a chemically rich filamentous cyanobacterium, has been characterized as a pathogenic organism...  相似文献   
982.

Background

MiRNAs and phasiRNAs are negative regulators of gene expression. These small RNAs have been extensively studied in plant model species but only 10 mature microRNAs are present in miRBase version 21, the most used miRNA database, and no phasiRNAs have been identified for the model legume Phaseolus vulgaris. Thanks to the recent availability of the first version of the common bean genome, degradome data and small RNA libraries, we are able to present here a catalog of the microRNAs and phasiRNAs for this organism and, particularly, we suggest new protagonists in the symbiotic nodulation events.

Results

We identified a set of 185 mature miRNAs, including 121 previously unpublished sequences, encoded by 307 precursors and distributed in 98 families. Degradome data allowed us to identify a total of 181 targets for these miRNAs. We reveal two regulatory networks involving conserved miRNAs: those known to play crucial roles in the establishment of nodules, and novel miRNAs present only in common bean, suggesting a specific role for these sequences. In addition, we identified 125 loci that potentially produce phased small RNAs, with 47 of them having all the characteristics of being triggered by a total of 31 miRNAs, including 14 new miRNAs identified in this study.

Conclusions

We provide here a set of new small RNAs that contribute to the broader knowledge of the sRNAome of Phaseolus vulgaris. Thanks to the identification of the miRNA targets from degradome analysis and the construction of regulatory networks between the mature microRNAs, we present here the probable functional regulation associated with the sRNAome and, particularly, in N2-fixing symbiotic nodules.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1639-5) contains supplementary material, which is available to authorized users.  相似文献   
983.
The adoptive transfer of alternatively activated macrophages (AAMs) has proven to attenuate inflammation in multiple mouse models of colitis; however, the effect of cryopreservation on AAMs, the ability of previously frozen AAMs to block dinitrobenzene sulfonic acid (DNBS) (Th1) and oxazolone (Th2) colitis and their migration postinjection remains unknown. Here we have found that while cryopreservation reduced mRNA expression of canonical markers of interleukin (IL)-4–treated macrophages [M(IL-4)], this step did not translate to reduced protein or activity, and the cells retained their capacity to drive the suppression of colitis. The anticolitic effect of M(IL-4) adoptive transfer required neither T or B cell nor peritoneal macrophages in the recipient. After injection into the peritoneal cavity, M(IL-4)s migrated to the spleen, mesenteric lymph nodes and colon of DNBS-treated mice. The chemokines CCL2, CCL4 and CX3CL1 were expressed in the colon during the course of DNBS-induced colitis. The expression of integrin β7 on transferred M(IL-4)s was required for their anticolitic effect, whereas the presence of the chemokine receptors CCR2 and CX3CR1 were dispensable in this model. Collectively, the data show that M(IL-4)s can be cryopreserved M(IL-4)s and subsequently used to suppress colitis in an integrin β7-dependent manner, and we suggest that these proof-of-concept studies may lead to new cellular therapies for human inflammatory bowel disease.  相似文献   
984.
985.
986.
Primates - Sleep in the primate order remains understudied, with quantitative estimates of sleep duration available for less than 10% of primate species. Even fewer species have had their sleep...  相似文献   
987.
The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are regulated by extracellular cues within the neural microenvironment. The adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we use human GBM cell lines, primary patient samples, and preclinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin coimmunoprecipitates with Rho-GDP dissociation inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin–RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, regulates activation of Rho proteins to promote GBM cell invasiveness. Hence targeting the αvβ8 integrin–RhoGDI1 signaling axis might be an effective strategy for blocking GBM cell invasion.  相似文献   
988.
Cell polarization is essential for many biological processes, including directed cell migration, and loss of polarity contributes to pathological conditions such as cancer. The Par complex (Par3, Par6, and PKCζ) controls cell polarity in part by recruiting the Rac-specific guanine nucleotide exchange factor T-lymphoma invasion and metastasis 1 (Tiam1) to specialized cellular sites, where Tiam1 promotes local Rac1 activation and cytoskeletal remodeling. However, the mechanisms that restrict Par-Tiam1 complex activity to the leading edge to maintain cell polarity during migration remain unclear. We identify the Rac-specific GTPase-activating protein (GAP) breakpoint cluster region protein (Bcr) as a novel regulator of the Par-Tiam1 complex. We show that Bcr interacts with members of the Par complex and inhibits both Rac1 and PKCζ signaling. Loss of Bcr results in faster, more random migration and striking polarity defects in astrocytes. These polarity defects are rescued by reducing PKCζ activity or by expressing full-length Bcr, but not an N-terminal deletion mutant or the homologous Rac-GAP, Abr, both of which fail to associate with the Par complex. These results demonstrate that Bcr is an integral member of the Par-Tiam1 complex that controls polarized cell migration by locally restricting both Rac1 and PKCζ function.  相似文献   
989.
Mucor circinelloides, a dimorphic opportunistic pathogen, expresses three heterotrimeric G‐protein beta subunits (Gpb1, Gpb2 and Gpb3). The Gpb1‐encoding gene is up‐regulated during mycelial growth compared with that in the spore or yeast stage. gpb1 deletion mutation analysis revealed its relevance for an adequate development during the dimorphic transition and for hyphal growth under low oxygen concentrations. Infection assays in mice indicated a phenotype with considerably reduced virulence and tissue invasiveness in the deletion mutants (Δgpb1) and decreased host inflammatory response. This finding could be attributed to the reduced filamentous growth in animal tissues compared with that of the wild‐type strain. Mutation in a regulatory subunit of cAMP‐dependent protein kinase A (PKA) subunit (PkaR1) resulted in similar phenotypes to Δgpb1. The defects exhibited by the Δgpb1 strain were genetically suppressed by pkaR1 overexpression, indicating that the PKA pathway is controlled by Gpb1 in M. circinelloides. Moreover, during growth under low oxygen levels, cAMP levels were much higher in the Δgpb1 than in the wild‐type strain, but similar to those in the ΔpkaR1 strain. These findings reveal that M. circinelloides possesses a signal transduction pathway through which the Gpb1 heterotrimeric G subunit and PkaR1 control mycelial growth in response to low oxygen levels.  相似文献   
990.
In continuation of our efforts to provide quantitative information on antiaddictive ibogan type alkaloid‐producing Tabernaemontana species, we used gas chromatography‐mass spectrometry (GC/MS) to compare the alkaloid profiles of the barks and/or leaves of one Mexican and one African species – T. arborea and T. crassa, respectively, with the primary sources of commercially available semisynthetic ibogaine, Voacanga africana root and stem bark. The qualitative and quantitative similarities between T. arborea and V. africana barks consolidate previous reports regarding the potential of the former as a promising alternative source of voacangine and ibogaine. The results also suggest that T. crassa could be used to produce conopharyngine and ibogaline, two compounds with the same basic skeletal structure and possibly similar antiaddictive properties as ibogaine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号