全文获取类型
收费全文 | 159篇 |
免费 | 10篇 |
专业分类
169篇 |
出版年
2024年 | 1篇 |
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 5篇 |
2019年 | 2篇 |
2018年 | 3篇 |
2017年 | 4篇 |
2016年 | 7篇 |
2015年 | 10篇 |
2014年 | 21篇 |
2013年 | 11篇 |
2012年 | 19篇 |
2011年 | 17篇 |
2010年 | 4篇 |
2009年 | 3篇 |
2008年 | 12篇 |
2007年 | 2篇 |
2006年 | 7篇 |
2005年 | 7篇 |
2004年 | 6篇 |
2003年 | 7篇 |
2002年 | 5篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1998年 | 1篇 |
1991年 | 2篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1983年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有169条查询结果,搜索用时 0 毫秒
61.
Cellular senescence is a state of permanent replicative arrest that allows cells to stay viable and metabolically active but resistant to apoptotic and mitogenic stimuli. Specific, validated markers can identify senescent cells, including senescence-associated β galactosidase activity, chromatin alterations, cell morphology changes, activated p16- and p53-dependent signaling and permanent cell cycle arrest. Senescence is a natural consequence of DNA replication-associated telomere erosion, but can also be induced prematurely by telomere-independent events such as failure to repair DNA double strand breaks. Here, we review the molecular pathways of senescence onset, focussing on the changes in chromatin organization that are associated with cellular senescence, particularly senescence-associated heterochromatin foci formation. We also discuss the altered dynamics of the DNA double strand break response within the context of aging cells. Appreciating how, mechanistically, cellular senescence is induced, and how changes to chromatin organization and DNA repair contributes to this, is fundamental to our understanding of the normal and premature human aging processes associated with loss of organ and tissue function in humans. 相似文献
62.
Soluble CD14 (sCD14) and IL-18 are markers and mediators of the innate immune response, and their plasma levels candidate biomarkers of HCV treatment effects and outcome. Here, we retrospectively studied sCD14 and IL-18 over the course of interferon-based treatment of HCV genotype 1 infection, with the aim to investigate the impact of direct-acting antivirals (DAAs) on the dynamics and relationships between these biomarkers and treatment effects and outcome. Two cohorts were followed longitudinally; one treated with standard dual therapy of pegylated IFNα and ribavirin, and one cohort receiving triple therapy including Telaprevir. sCD14 and IL-18 were measured before and during treatment and analyzed in relation to treatment effects. The initial analysis confirmed two patterns previously observed in patients with HCV/HIV-1 co-infection: Baseline levels of sCD14 were significantly lower in patients that went on to clear HCV infection in response to IFNα and ribavirin, and sCD14 levels were strongly induced during the course of this treatment. Interestingly, baseline levels of sCD14 and IL-18 in combination predicted treatment outcome in dual therapy better than either marker alone. Notably, these associations were weaker with the addition of Telaprevir to the treatment regimen, suggesting that the relationships between innate immune activation and outcome were altered and diminished by inclusion of a DAA in the treatment. In triple therapy, the dynamic increase of sCD14 in response to treatment was higher in patients clearing the virus, suggesting that the innate response to interferon is still significantly associated with outcome in patients treated with DAA-containing regimens. These results support the notion that levels of innate immune activation before and during treatment are associated with interferon-based treatment outcome. Furthermore, the addition of Telaprevir significantly alters the dynamics and relationships between innate immune biomarkers and treatment effects and outcome. 相似文献
63.
Volker Andresen Karolin Pollok Jan-Leo Rinnenthal Laura Oehme Robert Günther Heinrich Spiecker Helena Radbruch Jenny Gerhard Anje Sporbert Zoltan Cseresnyes Anja E. Hauser Raluca Niesner 《PloS one》2012,7(12)
Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology. Moreover, our striped-illumination approach is able to improve the resolution of any laser-scanning-microscope, including confocal microscopes, by simply choosing an appropriate detector. 相似文献
64.
Müller JJ Barbirz S Heinle K Freiberg A Seckler R Heinemann U 《Structure (London, England : 1993)》2008,16(5):766-775
Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 A crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed beta helix. In the trimer of Sf6 TSP, the parallel beta helices form a left-handed, coiled-beta coil with a pitch of 340 A. The C-terminal domain consists of a beta sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two beta-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture. 相似文献
65.
Histone chaperones in nucleosome eviction and histone exchange 总被引:1,自引:0,他引:1
66.
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics. 相似文献
67.
Christine Murto Frédérique Chammartin Karolin Schwarz Lea Marcia Melo da Costa Charles Kaplan Jorg Heukelbach 《PLoS neglected tropical diseases》2013,7(9)
Leprosy remains a public health problem in Brazil with new case incidence exceeding World Health Organization (WHO) goals in endemic clusters throughout the country. Migration can facilitate movement of disease between endemic and non-endemic areas, and has been considered a possible factor in continued leprosy incidence in Brazil. A study was conducted to investigate migration as a risk factor for leprosy. The study had three aims: (1) examine past five year migration as a risk factor for leprosy, (2) describe and compare geographic and temporal patterns of migration among past 5-year migrants with leprosy and a control group, and (3) examine social determinants of health associated with leprosy among past 5-year migrants. The study implemented a matched case-control design and analysis comparing individuals newly diagnosed with leprosy (n = 340) and a clinically unapparent control group (n = 340) without clinical signs of leprosy, matched for age, sex and location in four endemic municipalities in the state of Maranhão, northeastern Brazil. Fishers exact test was used to conduct bivariate analyses. A multivariate logistic regression analysis was employed to control for possible confounding variables. Eighty cases (23.5%) migrated 5-years prior to diagnosis, and 55 controls (16.2%) migrated 5-years prior to the corresponding case diagnosis. Past 5 year migration was found to be associated with leprosy (OR: 1.59; 95% CI 1.07–2.38; p = 0.02), and remained significantly associated with leprosy after controlling for leprosy contact in the family, household, and family/household contact. Poverty, as well as leprosy contact in the family, household and other leprosy contact, was associated with leprosy among past 5-year migrants in the bivariate analysis. Alcohol consumption was also associated with leprosy, a relevant risk factor in susceptibility to infection that should be explored in future research. Our findings provide insight into patterns of migration to localize focused control efforts in endemic areas with high population mobility. 相似文献
68.
Christian B. Gerhold Duane D. Winkler Kristina Lakomek Florian U. Seifert Sebastian Fenn Brigitte Kessler Gregor Witte Karolin Luger Karl-Peter Hopfner 《Nucleic acids research》2012,40(21):11036-11046
Nuclear actin-related proteins (Arps) are subunits of several chromatin remodelers, but their molecular functions within these complexes are unclear. We report the crystal structure of the INO80 complex subunit Arp8 in its ATP-bound form. Human Arp8 has several insertions in the conserved actin fold that explain its inability to polymerize. Most remarkably, one insertion wraps over the active site cleft and appears to rigidify the domain architecture, while active site features shared with actin suggest an allosterically controlled ATPase activity. Quantitative binding studies with nucleosomes and histone complexes reveal that Arp8 and the Arp8–Arp4–actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3–H4 tetramers over H2A–H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. In contrast, Arp4 prefers free (H3–H4)2 over nucleosomes and may serve remodelers through binding to (dis)assembly intermediates in the remodeling reaction. 相似文献
69.
We report on the molecular and biochemical characterization of CDJ1, one of three zinc-finger-containing J-domain proteins encoded by the Chlamydomonas reinhardtii genome. Fractionation experiments indicate that CDJ1 is a plastidic protein. In the chloroplast, CDJ1 was localized to the soluble stroma fraction, but also to thylakoids and to low density membranes. Although the CDJ1 gene was strongly heat shock inducible, CDJ1 protein levels increased only slightly during heat shock. Cellular CDJ1 concentrations were close to those of heat shock protein 70B (HSP70B), the major HSP70 in the Chlamydomonas chloroplast. CDJ1 complemented the temperature-sensitive phenotype of an Escherichia coli mutant lacking its dnaJ gene and interacted with E. coli DnaK, hence classifying it as a bona fide DnaJ protein. In soluble cell extracts, CDJ1 was found to organize into stable dimers and into complexes of high molecular mass. Immunoprecipitation experiments revealed that CDJ1 forms common complexes with plastidic HSP90C, HSP70B, and CGE1. In blue native-polyacrylamide gel electrophoresis, all four (co)chaperones migrated at 40% to 90% higher apparent than calculated molecular masses, indicating that greatest care must be taken when molecular masses of protein complexes are estimated from their migration relative to standard native marker proteins. Immunoprecipitation experiments from size-fractioned soluble cell extracts suggested that HSP90C and HSP70B exist as preformed complex that is joined by CDJ1. In summary, CDJ1 and CGE1 are novel cohort proteins of the chloroplast HSP90-HSP70 multichaperone complex. As HSP70B, CDJ1, and CGE1 are derived from the endosymbiont, whereas HSP90C is of eukaryotic origin, we observe in the chloroplast the interaction of two chaperone systems of distinct evolutionary origin. 相似文献
70.
Andreas Kakarougkas Amani Ismail Karolin Klement Aaron A. Goodarzi Sandro Conrad Raimundo Freire Atsushi Shibata Markus Lobrich Penny A. Jeggo 《Nucleic acids research》2013,41(21):9719-9731
Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR. Next, we examine roles for 53BP1 and BRCA1 in this process. Previous studies have shown that 53BP1 is pro-non-homologous end-joining and anti-HR. Surprisingly, we demonstrate that in G2 phase, 53BP1 is required for HR at HC-DSBs with its role being to promote phosphorylated KAP-1 foci formation. BRCA1, in contrast, is dispensable for pKAP-1 foci formation but relieves the barrier caused by 53BP1. As 53BP1 is retained at irradiation-induced foci during HR, we propose that BRCA1 promotes displacement but retention of 53BP1 to allow resection and any necessary HC modifications to complete HR. In contrast to this role for 53BP1 in HR in G2 phase, we show that it is dispensable for HR in S phase, where HC regions are likely relaxed during replication. 相似文献