首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   19篇
  213篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   10篇
  2011年   16篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   9篇
  2006年   5篇
  2005年   8篇
  2004年   7篇
  2003年   8篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   1篇
  1984年   6篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   8篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
排序方式: 共有213条查询结果,搜索用时 9 毫秒
61.
Both porphobilinogen oxygenase and skatole pyrrolooxygenase of wheat germ have isoenzyme forms of different charge. The more cationic isoenzymes were eluted from DEAE-cellulose with 10 mM Tris-HCl buffer (pH 7.6) and the less cationic were eluted with 50 mM NACl in the same buffer. The former had almost twice as many free amino groups (per mg of protein) as the latter. The more cationic isoenzyme was more sensitive to chelating agents and to acid treatment. They were differently inhibited by sodium dodecyl treatment and by temperature inactivation. Porphobilinogen oxygenase isoenzymes showed different activities with different buffers and also differed in their kinetics.  相似文献   
62.
63.
Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution.  相似文献   
64.
Molecular chaperones play a fundamental role in cellular protein folding. Using intact mammalian cells we examined the contribution of cytosolic chaperones to de novo folding. A large fraction of newly translated polypeptides associate transiently with Hsc70 and the chaperonin TRiC/CCT during their biogenesis. The substrate repertoire observed for Hsc70 and TRiC is not identical: Hsc70 interacts with a wide spectrum of polypeptides larger than 20 kDa, while TRiC associates with a diverse set of proteins between 30 and 60 kDa. Overexpression of a bacterial chaperonin 'trap' that irreversibly captures unfolded polypeptides did not interrupt the productive folding pathway. The trap was unable to bind newly translated polypeptides, indicating that folding in mammalian cells occurs without the release of non-native folding intermediates into the bulk cytosol. We conclude that de novo protein folding occurs in a protected environment created by a highly processive chaperone machinery and is directly coupled to translation.  相似文献   
65.
The incidence of in vitro fertilization was analyzed with respect to the degree of cumulus dissociation (expansion) at the time of oocyte recovery and also the semen quality. Of the oocytes surrounded by perfectly ("++") or moderately ("+") dissociated cumuli, 78.6% and 30.8%, respectively (P less than 0.001), were fertilized when the husband's semen analysis was in the normal range. The proportion of fertilized oocytes was not decreased in cases of polyzoospermia (greater than 130 X 10(6) spermatozoa/ml), but was decreased (P less than 0.05) when the semen analysis revealed other anomalies: oligozoospermia (less than 15 X 10(6) spermatozoa/ml), asthenozoospermia (less than 50% motile cells) or teratozoospermia (greater than 50% abnormal spermatozoa). The proportion of fertilized eggs cleaving in vitro was unaffected by semen quality but was lower when "+" cumulus oocytes were collected than when "++" cumulus oocytes were obtained (58.3% vs. 87.0%, P less than 0.02). In vitro incubation of the oocyte prior to insemination increased the incidence of fertilization by about 28% for both "+" (22.2 to 50.0%) and "++" (65.7 to 93.9%) cumulus oocytes. Finally, 67.6% of "++" cumulus oocytes developed into embryos when the insemination with spermatozoa from normal semen samples was delayed by several hours, compared with only 29.0% when the conditions were suboptimal ("+" cumulus oocyte, abnormal semen analysis or no delay prior to insemination). Eight pregnancies began following the replacement of 38 embryos in 34 patients. Six spontaneous abortions occurred, and chromosomal abnormalities were proven in the two cases analyzed. Two pregnancies continued for more than 3 months, resulting in term deliveries of two normal babies.  相似文献   
66.
Wilson disease (WD) is an autosomal recessive disorder resulting in an accumulation of copper in the liver, brain, and other organs. The WD locus (WND) has previously been linked to esterase D (ESD) and localized to 13q14-22. With the large Centre d'Etude Polymorphisme Humain cohort, a refined map of DNA markers from this region was constructed, with the following locus order: D13S1-D13S21-D13S22-D13S10-ESD-RB-WND-D 13S26-D13S12-D13S2. A significant excess of male recombination was observed between D13S21 and D13S22. Intervals distal to D13S22 showed an excess of female recombination. When these markers were tested on 19 WD families from a variety of ethnic backgrounds, the two closest loci were shown to be RB and D13S26. The retinoblastoma gene locus (RB) was shown to be proximal to WND at a distance of 4.4 centimorgans (cM), and D13S26 was placed distal to WND at a distance of 4.0 cM. ESD was assigned proximally at a distance of 9.4 cM. In all families studied WND was linked to one or more of the loci ESD, RB, or D13S26.  相似文献   
67.
Linkage of both several chromosome 13 DNA markers and the locus for the red cell enzyme esterase D (ESD) to Wilson disease (WD), an autosomal recessive disorder affecting copper metabolism, was investigated in five Middle-Eastern kindreds. The single-copy probe 7D2, identifying the polymorphic region D13S10, was demonstrated to lie 7.5 centiMorgans (cM) from the locus, since a maximum lod score of 4.66 at a recombination frequency of .07 (7.5 cM) was found between the locus for WD (WND) and D13S10. Multipoint linkage analysis between several chromosome 13 markers and WND enables us to propose that the order of markers closely linked to WND is as follows: centromere-D13S10-ESD-WND.  相似文献   
68.
Connexin 26 (GJB2) mutations lead to hearing loss in a significant proportion of all populations studied so far, despite the fact that at least 50 other genes are also associated with hearing loss. The entire coding region of connexin 26 was sequenced in 75 hearing impaired children and adults in Israel in order to determine the percentage of hearing loss attributed to connexin 26 and the types of mutations in this population. Age of onset in the screened population was both prelingual and postlingual, with hearing loss ranging from moderate to profound. Almost 39% of all persons tested harbored GJB2 mutations, the majority of which were 35delG and 167delT mutations. A novel mutation, involving both a deletion and insertion, 51del12insA, was identified in a family originating from Uzbekistan. Several parameters were examined to establish whether genotype-phenotype correlations exist, including age of onset, severity of hearing loss and audiological characteristics, including pure-tone audiometry, tympanometry, auditory brainstem response (ABR), and transient evoked otoacoustic emissions (TEOAE). All GJB2 mutations were associated with prelingual hearing loss, though severity ranged from moderate to profound, with variability even among hearing impaired siblings. We have not found a significant difference in hearing levels between individuals with 35delG and 167delT mutations. Our results suggest that, in Israel, clinicians should first screen for the common 167delT and 35delG mutations by simple and inexpensive restriction enzyme analysis, although if these are not found, sequencing should be done to rule out additional mutations due to the ethnic diversity in this region.  相似文献   
69.
Pyrrolooxygenase activities were examined in different varieties of Argentine wheat (Triticum aestivum) which included the traditional Klein varieties and the new mixed Mexican and traditional varieties (DeKalb and Cargill). The enzymatic activities were variety-dependent and were more inhibited in some varieties than in others, while some (Cargill) were devoid of the proteic inhibitor. The enzymes were isolated from the flours as two isoenzymes of different charge whose relative proportions were dependent on the variety of wheat used. The more cationic isoenzymes were eluted with 10 mM Tris-HCl buffer (pH 7.6 from DEAE-cellulose and the less cationic were eluted with 50 mM NACl in the same buffer. The protein inhibitor, when present, was associated with the more cationic isoenzymes. Porphobilinogen oxygenase and skatole pyrrolooxygenase activities were higher in the endosperm, while tryptophan pyrrolooxygenase activity was higher in the embryo. The proteic inhibitors were mainly concentrated in the embryo.  相似文献   
70.
Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT   总被引:8,自引:0,他引:8  
The TCP-1 ring complex (TRiC; also called CCT, for chaperonin containing TCP-1) is a large (approximately 900 kDa) multisubunit complex that mediates protein folding in the eukaryotic cytosol. The physiological substrate spectrum of TRiC is still poorly defined. Genetic and biochemical data show that it is required for the folding of the cytoskeletal proteins actin and tubulin. Recent years have witnessed a steady stream of reports that describe other proteins that require TRiC for proper folding. Furthermore, analysis of the transit of newly synthesized proteins through TRiC in intact cells suggests that the chaperonin contributes to the folding of a distinct subset of cellular proteins. Here we review the current understanding of a role for TRiC in the folding of newly synthesized polypeptides, with a focus on some of the individual proteins that require TRiC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号