首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   19篇
  213篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   10篇
  2011年   16篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   9篇
  2006年   5篇
  2005年   8篇
  2004年   7篇
  2003年   8篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   1篇
  1984年   6篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   8篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
1.
Porphobilinogen is the substrate of two enzymes: porphobilinogen deaminase and porphobilinogen-oxygenase. The first one transforms it into the metabolic precursors of heme and the second diverts it from this metabolic pathway by oxidizing porphobilinogen to 5-oxopyrrolinones. Rat blood is devoid of porphobilinogen-oxygenase under normal conditions while it carries porphobilinogen-deaminase activity. When the rats were submitted to hypoxia (pO2 = 0.42 atm) for 18 days, the activity of porphobilinogen-oxygenase appeared at the tenth day of hypoxia and reached the maximum at the 14–16th day. It decreased to a half after 2 days (half-life of the enzyme) and disappeared after 4 days of return to normal oxygen pressure. Porphobilinogen-deaminase activity increased after the first day of hypoxia, reached a maximum at the 14–16th day and did not decrease to normal values until the 15th day after return to normal oxygen pressure. The activities of both prophobilinogen-oxygenase and porphobilinogen-deaminase were induced by administration of erythropoietin. When rats were made anaemic with phenylhydrazine, porphobilinogen-oxygenase activity also appeared in the blood cells. Although the reticulocyte concentration was higher when compared to that obtained under hypoxia, the activities of the oxygenase obtained under both conditions were comparable. Porphobilinogen-deaminase activity was always closely related to the reticulocyte content. The appearance of porphobilinogen-oxygenase under the described erythropoietic conditions was due to a de novo induction of the enzyme, as shown by its inhibition with actinomycin D and cycloheximide. Porphobilinogen-oxygenase as well as porphobilinogen-deaminase were present in the rat bone marrow under normal conditions. Their activities increased in phenylhydrazine treated rats. The properties and kinetics of porphobilinogen-oxygenase from the rat blood and bone marrow were determined and found to differ in several aspects.  相似文献   
2.
3.
The non-invasive technique of 13C nuclear magnetic resonance was applied to study glucose metabolism in vivo in the insect parasite Crithidia fasciculata. It was found that under anaerobic conditions [1-13C]glucose underwent a glycolytic pathway whose main metabolic products were identified as [2-13C]ethanol, [2-13C]succinate and [1,3-13C2]glycerol. These metabolites were excreted by C. fasciculata into the incubation medium, while in the cells [3-13C]phosphoenolpyruvate was also detected in addition to the aforementioned compounds. The C3 acid is apparently the acceptor of the primary CO2 fixation reaction, which leads in Trypanosomatids to the synthesis of succinate. By addition of sodium bicarbonate to the incubation mixture L-[3-13C]malate was detected among the excretion products, while the ethanol:succinate ratio of 2.0 in the absence of bicarbonate changed to a ratio of 0.6 in the presence of the latter. This was due to a shift of the balance between carboxylation of phosphoenolpyruvate, leading to succinate, and pyruvate decarboxylation leading to ethanol. The addition of 25% 2H2O to the incubation mixture led to the formation of [2-13C, 2-2H]ethanol derived from the prior incorporation of 2H+ into pyruvate in the reactions mediated by either pyruvate kinase or malic enzyme. However, no 2H+ incorporation into L-malate was detected, excluding the possibility that the latter was formed by carboxylation of pyruvate, and lending support to the idea that L-malate results from the carboxylation of phosphoenolpyruvate to oxaloacetate by phosphoenolpyruvate carboxykinase. The formation of [2-13C, 2-2H]-succinate under the same conditions reflected the uptake of 2H+ during the reduction of fumarate. When the incubations were carried out in the presence of 100% 2H2O, several [1-13C, 1-2H]ethanol species were detected, as well as [2-13C, 2-2H]malate and [1,3-13C2, 1,3-2H2]glycerol. The former deuterated compounds reflect the existence of NAD2H species when the incubations were carried out in 100% 2H2O, while the incorporation of 2H+ into [1,3-13C2]glycerol must be attributed to the phosphoglucose-isomerase-mediated reaction during glycolysis.  相似文献   
4.
Misfolding and aggregation of proteins containing expanded polyglutamine repeats underlie Huntington's disease and other neurodegenerative disorders. Here, we show that the hetero-oligomeric chaperonin TRiC (also known as CCT) physically interacts with polyglutamine-expanded variants of huntingtin (Htt) and effectively inhibits their aggregation. Depletion of TRiC enhances polyglutamine aggregation in yeast and mammalian cells. Conversely, overexpression of a single TRiC subunit, CCT1, is sufficient to remodel Htt-aggregate morphology in vivo and in vitro, and reduces Htt-induced toxicity in neuronal cells. Because TRiC acts during de novo protein biogenesis, this chaperonin may have an early role preventing Htt access to pathogenic conformations. Based on the specificity of the Htt-CCT1 interaction, the CCT1 substrate-binding domain may provide a versatile scaffold for therapeutic inhibitors of neurodegenerative disease.  相似文献   
5.
The key role of the foetal germ cell line in the reproductive capacity of the adult has been known for a long time. More recently, the observed increase in male reproductive disorders such as the decline of sperm count and quality and the increased incidence of testicular cancer has been postulated to be due to alterations of foetal and neonatal testicular development in response to increasing environmental pollution. However, few tools are available to study foetal and neonatal germ cell line development and the effects of physiological or toxic substances on this process. The authors have developed an organ culture system in which foetal or neonatal testis is grown on a filter floating on a synthetic medium free of serum, hormones or biological factors. This study, using rats and mice, first compared the long-term morphological and functional development of Sertoli and germ cells in thisin vivo system. In rats, these cells developed normally over a period of two weeksin vitro. Fewer cells were produced thanin vivo, but a similar level of differentiated function was observed. Germ cells, which are difficult to maintainin vitro, resumed mitosis after a quiescent period, at the same time asin vivo. Similar results were obtained with mouse fetuses, but this model was less efficient. This culture model can be used to study post-natal development of the germ cell lineage in testes derived from foetuses on the last day of foetal life and invalidated for P63, that do not survive after birth. This gene was found to be involved in the regulation of germ apoptosis which resumes after birth in the mouse. Lastly, this model applied to the human species (from 6 to 12 weeks of gestation) showed that testicular architecture and germ cells can be maintained for 4 days with better efficiency at younger stages than at older stages. p]In conclusion, testicular architecture and intercellular communications are sufficiently preserved to sustain gametogenesisin vitro with no added factors. This method is potentially useful to study the effects of various factors, particularly xenobiotics.  相似文献   
6.
Preimplantation genetic diagnosis (PGD) first consisted of the selection of female embryos for patients at risk of transmitting X-linked recessive diseases. Advances in molecular biology now allow the specific diagnosis of almost any Mendelian disease. For families with an identified X-linked recessive disease-causing mutation, non-specific diagnosis by sex identification can be considered as a sub-standard method, since it involves the unnecessary disposal of healthy male embryos and reduces success rate by diminishing the pool of embryos eligible for transfer. The most telomeric part of the X-chromosome long arm is a highly gene-rich region encompassing disease genes such as haemophilia A, X-linked adrenoleukodystrophy, X-linked hydrocephalus and incontinentia pigmenti. We developed five single-cell triplex amplification protocols with microsatellite markers DXS1073, DXS9901 (BGN), G6PD, DXS1108, DXS8087 and F8C-IVS13 located in this Xq terminal region. These tests allow the diagnosis of all diseases previously mentioned providing that the genetic material allowing the identification of the morbid allele can be obtained. The choice of the microsatellite set to use depends on the localisation of the gene responsible for the diagnosed pathology and on the informativity of the markers in particular families. Single-cell amplification efficiency was assessed on single lymphocytes. Amplification rate of the different markers ranged from 89–97% with an allele drop out rate of 2–19 %. So far PGD has been carried out for three carrier females at risk of transmitting X-linked adrenoleukodystrophy, X-linked hydrocephalus and hemophilia A. The latter one is now pregnant.  相似文献   
7.
8.
9.
The ring-shaped hetero-oligomeric chaperonin TRiC/CCT uses ATP to fold a diverse subset of eukaryotic proteins. To define the basis of TRiC/CCT substrate recognition, we mapped the chaperonin interactions with the VHL tumor suppressor. VHL has two well-defined TRiC binding determinants. Each determinant contacts a specific subset of chaperonin subunits, indicating that TRiC paralogs exhibit distinct but overlapping specificities. The substrate binding site in these subunits localizes to a helical region in the apical domains that is structurally equivalent to that of bacterial chaperonins. Transferring the distal portion of helix 11 between TRiC subunits suffices to transfer specificity for a given substrate motif. We conclude that the architecture of the substrate binding domain is evolutionarily conserved among eukaryotic and bacterial chaperonins. The unique combination of specificity and plasticity in TRiC substrate binding may diversify the range of motifs recognized by this chaperonin and contribute to its unique ability to fold eukaryotic proteins.  相似文献   
10.
Mutation analysis of LMX1B gene in nail-patella syndrome patients.   总被引:5,自引:0,他引:5       下载免费PDF全文
Nail-patella syndrome (NPS), a pleiotropic disorder exhibiting autosomal dominant inheritance, has been studied for >100 years. Recent evidence shows that NPS is the result of mutations in the LIM-homeodomain gene LMX1B. To determine whether specific LMX1B mutations are associated with different aspects of the NPS phenotype, we screened a cohort of 41 NPS families for LMX1B mutations. A total of 25 mutations were identified in 37 families. The nature of the mutations supports the hypothesis that NPS is the result of haploinsufficiency for LMX1B. There was no evidence of correlation between aspects of the NPS phenotype and specific mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号