首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   919篇
  免费   104篇
  2022年   6篇
  2021年   15篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   8篇
  2016年   18篇
  2015年   25篇
  2014年   23篇
  2013年   35篇
  2012年   49篇
  2011年   48篇
  2010年   25篇
  2009年   26篇
  2008年   48篇
  2007年   35篇
  2006年   32篇
  2005年   46篇
  2004年   35篇
  2003年   39篇
  2002年   30篇
  2001年   30篇
  2000年   25篇
  1999年   25篇
  1998年   6篇
  1997年   10篇
  1996年   16篇
  1995年   6篇
  1994年   17篇
  1993年   13篇
  1992年   16篇
  1991年   13篇
  1990年   12篇
  1989年   18篇
  1988年   13篇
  1987年   14篇
  1986年   18篇
  1985年   14篇
  1984年   13篇
  1983年   12篇
  1982年   15篇
  1981年   7篇
  1980年   9篇
  1979年   11篇
  1978年   11篇
  1977年   9篇
  1976年   13篇
  1975年   7篇
  1972年   7篇
  1969年   6篇
排序方式: 共有1023条查询结果,搜索用时 125 毫秒
91.
Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors.  相似文献   
92.
Rhizosphere is the complex place of numerous interactions between plant roots, microbes and soil fauna. Whereas plant interactions with aboveground organisms are largely described, unravelling plant belowground interactions remains challenging. Plant root chemical communication can lead to positive interactions with nodulating bacteria, mycorriza or biocontrol agents or to negative interactions with pathogens or root herbivores. A recent study1 suggested that root exudates contribute to plant pathogen resistance via secretion of antimicrobial compounds. These findings point to the importance of plant root exudates as belowground signalling molecules, particularly in defense responses. In our report,2 we showed that under Fusarium attack the barley root system launched secretion of phenolic compounds with antimicrobial activity. The secretion of de novo biosynthesized t-cinnamic acid induced within 2 days illustrates the dynamic of plant defense mechanisms at the root level. We discuss the costs and benefits of induced defense responses in the rhizosphere. We suggest that plant defense through root exudation may be cultivar dependent and higher in wild or less domesticated varieties.Key words: root exudates, plant defense, t-cinnamic acid, fusarium, induced defensePlants grow and live in very complex and changing ecosystems. Because plants lack the mobility to escape from attack by pathogens or herbivores, they have developed constitutive and in addition inducible defenses that are triggered by spatiotemporally dynamic signaling mechanisms. These defenses counteract the aggressor directly via toxins or defense plant structures or indirectly by recruitment of antagonists of aggressors. Whereas induced defenses are well described in aboveground interactions, evidence of the occurrence of such mechanisms in belowground interactions remains limited. The biosynthesis of a defensive molecule could be both constitutive and inducible with a low level of a preformed pool (Fig. 1). In addition, upon encounter of an attacking organism, those levels could be induced to rise locally to a high level of active compound that is able to disarm the pathogen.2,3 Only a few examples show that root exudates play a role in induced plant defense. Hairy roots of Ocimum basilicum secrete rosmarinic acid only when challenged by the pathogenic fungus Pythium ultimum.4 Wurst et al.5 reported on the induction of irridoid glycosides in root exudates of Plantago lanceolata in presence of nematodes. In vivo labelling experiments2 with 13CO2 showed the induction of phenolic compounds secreted by barley roots after Fusarium graminearum infection and the de novo biosynthesis of root secreted t-cinnamic acid within 2 days. These results show that the pool of induced t-cinnamic acid originated from both pre-formed and newly formed carbon pools (Fig. 1), highlighting a case of belowground induced defense inside and outside the root system.Open in a separate windowFigure 1Suggested mechanisms for the induction of root defense exudates in barley in response to Fusarium attack. Upon pathogen attack by Fusarium, the initial preformed pool of phenolic compounds is increased by the addition of inducible, de novo biosynthesized t-cinnamic acid. Both, the preformed pool and the de novo biosynthesized pool fuel the exudation of defense compounds from infected roots.The concept of fitness costs is frequently presented to explain the coexistence of both constitutive and induced defense.6 In the case of induced defense, resources are invested in defenses only when the plant is under attack. In the absence of an infection, plants can optimize allocation of their resources to reproduction and growth to compete with neighbours.7 Constitutive defenses are thought to be more beneficial when the probability of attack is high, whereas adjustable, induced defenses are more valuable to fight against an unpredictable pathogen. Non disturbed soil is a heterogeneous matrix where biodiversity is very high and patchy8,9 and organism motility is rather restricted.10 As a consequence of the patchiness, belowground environment is expected to be favourable to selection for induced responses.11 The absence of defense root exudates between two infections may form an unpredictable environment for soil pathogens and reduce the chance for adaptation of root attackers. Plants may also use escape strategies to reduce the effect of belowground pathogens. Henkes et al. (unpublished) showed that Fusarium-infected barley plants reduced carbon allocation towards infected roots within a day and increased allocation carbon to uninfected roots. These results illustrate how reallocation of carbon toward non infected root parts represents a way to limit the negative impact of root infection.We have demonstrated the potential of barley plants to defend themselves against soil pathogen by root exudation.2 Even the barley cultivar ‘Barke’ used in our study, a modern cultivated variety, was able to launch defense machinery via exudation of antimicrobial compounds when infected by F. graminearum. We suggest that plant defense through root exudation might be cultivar dependent and perhaps higher in wild or less domesticated varieties. Taddei et al.12 reported that constitutivelyproduced root exudates from a resistant Gladiolus cultivar inhibit spore germination of Fusarium oxysporum whereas root exudates from a susceptible cultivar do not affect F. oxysporum germination. Root exudates from the resistant cultivar contained higher amounts of aromaticphenolic compounds compared to the susceptible cultivar and these compounds may be responsible for the inhibition of spore germination. Metabolic profiling of wheat cultivars, ‘Roblin’ and ‘Sumai3’, respectively, susceptible and resistant to Fusarium Head Blight, showed that t-cinnamic acid was a discriminating factor responsible for resistance/defense function.13 Therefore it is likely that wild barley varieties hold higher defense capacities compare to cultivated varieties selected for high yield. In the future, plant breeders in organic and low-input farming could use root-system defense ability as new trait in varietal variation.  相似文献   
93.
Dense aggregations of tube-worms can stabilize sediments and generate oases for benthic communities that are different and often more diverse and abundant than those of the surroundings. If these features are to qualify as biogenic reefs under nature-conservation legislation such as the EC Habitats Directive, a level of stability and longevity is desirable aside from physical and biological attributes. Lanice conchilega (Pallas, 1766) is widely distributed around the European coast and aggregations of this tube-dwelling polychaete are known to have a positive effect on the biodiversity of associated species in inter- and sub-tidal areas. This increases the value of L. conchilega-rich habitats for higher trophic levels such as birds and fish. However, L. conchilega is currently not recognized as a reef builder primarily due to uncertainty about the stability of their aggregations. We carried out three studies on different spatial and temporal scales to explore a number of properties relating to stability: (1) Individual aggregations of L. conchilega of ~1 m(2) were monitored for up to 1 year, (2) records of L. conchilega from a 258-ha area over a 35-year period were analyzed, (3) the recovery of a population of L. conchilega subjected to disturbances by cultivation of Manila clams (Ruditapes philippinarum) was followed over 3 years. The studies provided evidence about the longevity of L. conchilega aggregations, their resistance to disturbance, their resilience in recovering from negative impact and their large-scale persistence. The results showed that populations of L. conchilega were prone to considerable fluctuation and the stability of aggregations depended on environmental factors and on recruitment. The tube-worms proved to be susceptible to disturbance by cultivation of Manila clams but demonstrated the potential to recover from that impact. The long-term monitoring of a large L. conchilega population in the Bay of Mont Saint Michel (France) indicated that aggregations can persist over many decades with a constant, densely populated core area and an expanding and contracting more thinly populated fringe zone. The stability of aggregations of L. conchilega and the structures they form do not unequivocally fit the currently accepted definition of a reef. However, given L. conchilega's accepted reef-like potential to influence diversity and abundance in benthic communities, we suggest clarifying and expanding the definition of reefs so that species with records of significant persistence in particular areas and which otherwise meet expectations of reefs are included within the definition.  相似文献   
94.
95.
96.
The Middle Miocene Kingshill Marl of St. Croix, Virgin Islands, affords an opportunity to reconstruct ancient island-margin calcareous plankton communities and to determine their contribution to the accumulation of island-slope sediments. Because of the present outcrop pattern of this unit, both lateral and vertical changes in organism/sediment relationships may be investigated.Subsidence of a NE-SW trending grabenal structure on St. Croix during the latest Early Miocene produced the Kingshill Seaway, which was flanked on the northwest and southeast by island masses of Cretaceous volcanogenic sediments, and on the northeast and southwest by the insular shelf edges. Hydrographic conditions in the shallow Seaway promoted high rates of pelagic biogenic skeletal production, resulting in the accumulation of thick pelagic calcareous oozes composed of a framework of calcitic planktonic foraminiferal tests in a matrix of calcareous nannoplankton, planktonic foraminiferal debris and fine aragonite needles. Minor siliceous components included diatom frustules and sponge spicules. Turbidity currents and debris flows transported terrigenous detritus and reef-tract skeletal rubble into the Seaway from the shallow basin margins.Comparison of the pelagic chalks and marls of the Kingshill Marl with modern sediments accumulating on the northwest St. Croix island slope establishes valuable guidelines to infer the total biogenic composition of the original ooze accumulating on the Kingshill Seaway floor. Comparison of the diagenetic processes affecting island-slope calcareous oozes with those affecting their deep-sea counterparts underscores the necessity of considering the range and intensity of differential solution as a factor in the ooze → chalk diagenetic continuum. The major diagenetic event in the Kingshill Marl ooze → chalk process was the solution of aragonitic skeletal sediment, probably during flushing by fresh water.  相似文献   
97.
Unlike other catarrhines, colobines show early molar eruption relative to that of the anterior dentition. The pattern is variable, with Asian genera (Presbytina) showing a greater variability than the African genera (Colobina). The polarity of early relative molar eruption, as well as the degree to which it is related to phylogeny, are unclear. Schultz (1935) suggested that the trend reflects phylogeny and is primitive for catarrhines. More recently, however, researchers have proposed that life history and dietary hypotheses account for early relative molar eruption. If the colobine eruption pattern is primitive for catarrhines, it implies that cercopithecines and hominoids converged on delayed relative molar eruption. Alternatively, if the colobine condition is derived, factors such as diet and mortality patterns probably shaped colobine eruption patterns. Here we update our knowledge on eruption sequences of living colobines, and explore the evolutionary history of the colobine dental eruption pattern by examining fossil colobine taxa from Eurasia (Mesopithecus) and Africa (Kuseracolobus aramisi and Colobus sp.) and the basal cercopithecoid Victoriapithecus macinnesi. We scored specimens per Harvati (2000). The Late Miocene-Early Pliocene Mesopithecus erupts the second molar early relative to the incisors, while the Early Pliocene Kuseracolobus aramisi does not. These results demonstrate that the common colobine tendency for early molar eruption relative to the anterior dentition had appeared by the Late Miocene, and that some of the diversity observed among living colobines was already established in the Late Miocene/Early Pliocene. We discuss the implications of these results for phylogenetic, life history, and dietary hypotheses of dental development.  相似文献   
98.
Net1 is a RhoA-specific guanine nucleotide exchange factor which localizes to the nucleus at steady state. A deletion in its N terminus redistributes the protein to the cytosol, where it activates RhoA and can promote transformation. Net1 contains a PDZ-binding motif at the C terminus which is essential for its transformation properties. Here, we found that Net1 interacts through its PDZ-binding motif with tumor suppressor proteins of the Dlg family, including Dlg1/SAP97, SAP102, and PSD95. The interaction between Net1 and its PDZ partners promotes the translocation of the PDZ proteins to nuclear subdomains associated with PML bodies. Interestingly, the oncogenic mutant of Net1 is unable to shuttle the PDZ proteins to the nucleus, although these proteins still associate as clusters in the cytosol. Our results suggest that the ability of oncogenic Net1 to transform cells may be in part related to its ability to sequester tumor suppressor proteins like Dlg1 in the cytosol, thereby interfering with their normal cellular function. In agreement with this, the transformation potential of oncogenic Net1 is reduced when it is coexpressed with Dlg1 or SAP102. Together, our results suggest that the interaction between Net1 and Dlg1 may contribute to the mechanism of Net1-mediated transformation.  相似文献   
99.
The present study determined whether thermal injury increases the expression of the ubiquitin (Ub) E3 ligases referred to as muscle ring finger (MuRF)-1 and muscle atrophy F-box (MAFbx; aka atrogin-1), which are muscle specific and responsible for the increased protein breakdown observed in other catabolic conditions. After 48 h of burn injury (40% total body surface area full-thickness scald burn) gastrocnemius weight was reduced, and this change was associated with an increased mRNA abundance for atrogin-1 and MuRF-1 (3.1- to 8-fold, respectively). Similarly, burn increased polyUb mRNA content in the gastrocnemius twofold. In contrast, there was no burn-induced atrophy of the soleus and no significant change in atrogin-1, MuRF-1, or polyUb mRNA. Burns also did not alter E3 ligase expression in heart. Four hours after administration of the anabolic agent insulin-like growth factor (IGF)-I to burned rats, the mRNA content of atrogin-1 and polyUb in gastrocnemius had returned to control values and the elevation in MuRF-1 was reduced 50%. In contrast, leucine did not alter E3 ligase expression. In a separate study, in vivo administration of the proteasome inhibitor Velcade prevented burn-induced loss of muscle mass determined at 48 h. Finally, administration of the glucocorticoid receptor antagonist RU-486 did not prevent burn-induced atrophy of the gastrocnemius or the associated elevation in atrogin-1, MuRF-1, or polyUb. In summary, the acute muscle wasting accompanying thermal injury is associated with a glucocorticoid-independent increase in the expression of several Ub E3 ligases that can be downregulated by IGF-I.  相似文献   
100.
The effect of different starting stances from a standing position on short sprint times and the subsequent variability in times was investigated in this study. A dual-beam timing light system was used to measure 5- and 10-m times for 3 different standing starts commonly found in the sporting environment: parallel (feet parallel to the start line), split (lead left foot on start line, right leg back), and false (initial parallel start, right leg drops back to split start when movement initiated). The parallel start was found to be significantly (alpha < 0.05) slower than the other 2 stances for both the 5- ( approximately 8.3%) and the 10-m (approximately 5.9%) distances. Within the trial, variation of the different starting stances was equally consistent; however, there was less variability for the 10-m distance (CV = 1.16-1.67%) than the 5-m distance (CV = 1.43-2.15%) for each start for both men and women. The split and false start seem to offer the best option as a movement strategy for minimizing short-distance sprint times. However, the benefits of these 2 starts are less clear if total movement time is the variable of interest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号