首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   31篇
  441篇
  2018年   5篇
  2015年   7篇
  2014年   12篇
  2013年   10篇
  2012年   23篇
  2011年   16篇
  2010年   12篇
  2009年   19篇
  2008年   12篇
  2007年   24篇
  2006年   12篇
  2005年   17篇
  2004年   17篇
  2003年   11篇
  2002年   17篇
  2001年   13篇
  2000年   15篇
  1999年   10篇
  1998年   6篇
  1997年   6篇
  1996年   4篇
  1995年   10篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   10篇
  1990年   5篇
  1989年   8篇
  1988年   11篇
  1987年   9篇
  1986年   9篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1980年   5篇
  1979年   5篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   8篇
  1972年   7篇
  1971年   5篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   3篇
  1965年   3篇
排序方式: 共有441条查询结果,搜索用时 15 毫秒
51.
52.
The tissue-specific, developmental, and genetic control of four endosperm-active genes was studied via expression of GUS reporter genes in transgenic maize plants. The transgenes included promoters from the maize granule-bound starch synthase (Waxy) gene (zmGBS), a maize 27 kDa zein gene (zmZ27), a rice small subunit ADP-glucose pyrophosphorylase gene (osAGP) and the rice glutelin 1 gene (osGT1). Most plants had a transgene expression profile similar to that of the endogenous gene: expression in the pollen and endosperm for the zmGBS transgene, and endosperm only for the others. Histological analysis indicated expression initiated at the periphery of the endosperm for zmGBS, zmZ27 and osGT1, while osAGP transgene activity tended to start in the lower portion of the seed. Transgene expression at the RNA level was proportional to GUS activity, and did not influence endogenous gene expression. Genetic analysis showed that there was a positive dosage response with most lines. Activity of the zmGBS transgene was threefold higher in a low starch (shrunken2) genetic background. This effect was not seen with zmZ27 or osGT1 transgenes. The expression of the transgenes is discussed relative to the known behaviour of the endogenous genes, and the developmental programme of the maize endosperm  相似文献   
53.
The binding of glucose to bovine brain hexokinase, isozyme I, exhibited one binding site per 100,000 molecular weight. Glucose-6-P binding was examined in the absence and presence of ATP. ATP and glucose-6-P were shown to compete for the same binding site on the enzyme. A model was proposed to account for these findings and the previously reported data that glucose-6-P and Pi exhibit mutually exclusive, non-cooperative binding to the enzyme. The model shows that brain hexokinase exists in two rapidly interconvertible states, either with or without Pi and that glucose-6-P binding to the phosphate associated enzyme form is relatively very poor. This proposal has been tested kinetically and the data appear to support the suggested model.  相似文献   
54.
Arend M  Stinzing A  Wind C  Langer K  Latz A  Ache P  Fromm J  Hedrich R 《Planta》2005,223(1):140-148
In previous studies, we have shown that annual expression profiles of cambial and wood tissue with respect to the Shaker K+ channel PTORK correlate with cambial activity. To follow PTORK-gene activity on the cellular level, we isolated the respective promoter regions and generated transgenic Arabidopsis plants expressing the GUS gene under the control of the PTORK promoter. Cross-sections of petioles showed PTORK-driven signals predominantly in the xylem parenchyma surrounding the vessels and in the phloem. Antibodies raised against a unique N-terminal region of PTORK in histo-immunochemical analyses recognised this K+-release channel in growth-active poplar plants only. PTORK labelling was found in differentiating xylem cells (young fibres) and mature xylem (vessel-associated cells of the ray parenchyma). Patch-clamp measurements on fibre cell protoplasts, derived from young poplar twigs, identified outward-rectifying K+ channels as the major K+ conductance of this cell type, which resembled the biophysical properties of PTORK when expressed in Xenopus oocytes.Electronic Supplementary Material Supplementary material is available for this article at Matthias Arend and Andrea Stinzing contributed equally to this work  相似文献   
55.
To gain an understanding of the role of electrical signaling in trees, poplar (Populus trichocarpa, Populus tremula x P. tremuloides) shoots were stimulated by chilling as well as flaming. Two kinds of signal propagation were detected by microelectrode measurements (aphid technique) in the phloem of leaf veins: (1) basipetal, short-distance signaling that led to rapid membrane hyperpolarization caused by K+-efflux within the leaf lamina; and (2) acropetal, long-distance signaling that triggered depolarization of the membrane potential in the leaf phloem. In the latter, the depolarizing signals travel across the stem from the manipulated leaves to adjacent leaves where the net CO2 uptake rate is temporarily depressed toward compensation. With regard to photosystem II, both heat-induced long-distance and short-distance signaling were investigated using two-dimensional "imaging" analysis of chlorophyll fluorescence. Both types of signaling significantly reduced the quantum yield of electron transport through photosystem II. Imaging analysis revealed that the signal that causes yield reduction spreads through the leaf lamina. Coldblocking of the stem proved that the electrical signal transmission via the phloem becomes disrupted, causing the leaf gas exchange to remain unaffected. Calcium-deficient trees showed a marked contrast inasmuch as the amplitude of the electrical signal was distinctly reduced, concomitant with the absence of a significant response in leaf gas exchange upon flame wounding. In summary, the above results led us to conclude that calcium as well as potassium is involved in the propagation of phloem-transmitted electrical signals that evoke specific responses in the photosynthesis of leaves.  相似文献   
56.
Attraction of subterranean termites (Isoptera) to carbon dioxide   总被引:1,自引:0,他引:1  
Subterranean termites, Reticulitermes spp., were attracted to carbon dioxide (CO2) in laboratory and field tests. In behavioral bioassays, Reticulitermes flavipes (Kollar), Reticulitermes tibialis Banks, and Reticulitermes virginicus Banks were attracted to CO2 concentrations between 5 and 50 mmol/mol. In further bioassays, R. tibialis and R. virginicus were attracted to the headspace from polyisocyanurate construction foam that contained 10-12 mmol/mol CO2. In soil bioassays in the laboratory, more termites foraged in chambers containing CO2-generating formulations than in unbaited control chambers. In field tests, stations containing CO2-generating baits attracted R. tibialis away from wooden fence posts at rangeland sites in Colorado. For all of the CO2 formulations tested, termites foraged in significantly more bait stations at treatment fenceposts than in bait stations at the control fenceposts. By the end of the 8-wk study, the number of bait stations located by termites at treatment fenceposts ranged from 40 to 90%. At control fenceposts, termites foraged in only a single station and the one positive station was not located by termites until week 5 of the study. At treatment fenceposts, termites foraged equally in active stations (containing a CO2-generating bait) and passive stations (with no CO2-generating bait), indicating that bait stations may benefit passively from a proximal CO2 source in the soil. CO2 used as an attractant in current baiting systems could improve their effectiveness by allowing earlier exposure of termites to an insecticide.  相似文献   
57.
Fait A  Yellin A  Fromm H 《FEBS letters》2005,579(2):415-420
In plants, succinic semialdehyde dehydrogenase (SSADH)-deficiency results in the accumulation of reactive oxygen intermediates (ROI), necrotic lesions, dwarfism, and hypersensitivity to environmental stresses. We report that Arabidopsis ssadh knockout mutants contain five times the normal level of gamma-hydroxybutyrate (GHB), which in SSADH-deficient mammals accounts for phenotypic abnormalities. Moreover, the level of GHB in Arabidopsis is light dependent. Treatment with gamma-vinyl-gamma-aminobutyrate, a specific gamma-aminobutyrate (GABA)-transaminase inhibitor, prevents the accumulation of ROI and GHB in ssadh mutants, inhibits cell death, and improves growth. These results provide novel evidence for the relationship between the GABA shunt and ROI, which may, in part, explain the phenotype of SSADH-deficient plants and animals.  相似文献   
58.
59.
Juvenile myelomonocytic leukemia (JMML) is a unique myeloproliferative disorder of early childhood in which mutations in NRAS, KRAS, PTPN11, NF1 and CBL are frequently found. Using high-resolution oligo array-based comparative genomic hybridization (aCGH), 20 JMML samples were investigated for submicroscopic genomic copy number alterations. Besides known cytogenetic aberrations, ten samples displayed additional submicroscopic alterations. Interestingly, an almost identical gain of chromosome 8 was identified in two patients. Subsequently, fluorescence in situ hybridization indicated a constitutional partial trisomy 8 mosaic (cT8M) in both patients. A survey on 27 cT8M patients with reported malignancies showed a predominance of myeloid malignancies including JMML. Our results dramatically reduce the critical region on chromosome 8 to 8p11.21q11.21. To determine how constitutional partial trisomy 8 mosaicisms may contribute to leukemogenesis in different mutational subtypes of JMML and other myeloid malignancies, further investigations are required.  相似文献   
60.
Tailor‐made microorganisms Microbial diversity provides unlimited resources for the development of novel industrial processes and products. Since the beginning of the 20th century microorganisms have been successfully applied for the large scale production of bio‐based products. In recent years, modern methods of strain development and Synthetic Biology have enabled biotech engineers to design even more sophisticated and tailor‐made microorganisms. These microbes serve industrial processes for the production of bulk chemicals, enzymes, polymers, biofuels as well as plant‐derived ingredients such as Artemisinin in an ecologically and economically sustainable and attractive fashion. In the future, production of advanced biofuels, microbial fuel cells, CO2 as feedstock and microbial cellulose are research topics as well as challenges of global importance. Continuous efforts in microbiology and biotechnology research will be pivotal for white biotechnology to gain more momentum in transforming the chemical industry towards a knowledge based bio‐economy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号