首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   31篇
  2018年   5篇
  2015年   7篇
  2014年   12篇
  2013年   10篇
  2012年   23篇
  2011年   16篇
  2010年   12篇
  2009年   19篇
  2008年   12篇
  2007年   24篇
  2006年   12篇
  2005年   17篇
  2004年   17篇
  2003年   11篇
  2002年   17篇
  2001年   13篇
  2000年   15篇
  1999年   10篇
  1998年   6篇
  1997年   6篇
  1996年   4篇
  1995年   10篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   10篇
  1990年   5篇
  1989年   8篇
  1988年   11篇
  1987年   9篇
  1986年   9篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1980年   5篇
  1979年   5篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   8篇
  1972年   7篇
  1971年   5篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   3篇
  1965年   3篇
排序方式: 共有441条查询结果,搜索用时 421 毫秒
31.
32.
Post-translational attachment of isoprenyl groups to conserved cysteine residues at the C-terminus of a number of regulatory proteins is important for their function and subcellular localization. We have identified a novel calmodulin, CaM53, with an extended C-terminal basic domain and a CTIL CaaX-box motif which are required for efficient prenylation of the protein in vitro and in vivo. Ectopic expression of wild-type CaM53 or a non-prenylated mutant protein in plants causes distinct morphological changes. Prenylated CaM53 associates with the plasma membrane, but the non-prenylated mutant protein localizes to the nucleus, indicating a dual role for the C-terminal domain. The subcellular localization of CaM53 can be altered by a block in isoprenoid biosynthesis or sugar depletion, suggesting that CaM53 activates different targets in response to metabolic changes. Thus, prenylation of CaM53 appears to be a novel mechanism by which plant cells can coordinate Ca2+ signaling with changes in metabolic activities.  相似文献   
33.
Gene expression in skeletal muscle is regulated by a family of myogenic basic helix-loop-helix (bHLH) proteins. The binding of these bHLH proteins, notably MyoD and myogenin, to E-boxes in their own regulatory regions is blocked by protein kinase C (PKC)-mediated phosphorylation of a single threonine residue in their basic region. Because electrical stimulation increases PKC activity in skeletal muscle, these data have led to an attractive model suggesting that electrical activity suppresses gene expression by stimulating phosphorylation of this critical threonine residue in myogenic bHLH proteins. We show that electrical activity stimulates phosphorylation of myogenin at threonine 87 (T87) in vivo and that calmodulin-dependent kinase II (CaMKII), as well as PKC, catalyzes this reaction in vitro. We find that phosphorylation of myogenin at T87 is dispensable for skeletal muscle development. We show, however, that the decrease in myogenin (myg) expression following innervation is delayed and that the increase in expression following denervation is accelerated in mutant mice lacking phosphorylation of myogenin at T87. These data indicate that two distinct innervation-dependent mechanisms restrain myogenin activity: an inactivation mechanism mediated by phosphorylation of myogenin at T87, and a second, novel regulatory mechanism that regulates myg gene activity independently of T87 phosphorylation.  相似文献   
34.
In plants, research on γ-aminobutyric acid (GABA) has focused on its role as a metabolite, mainly in the context of responses to biotic and abiotic stresses. By contrast, studies of GABA in vertebrates have concentrated mainly on its role as a neurotransmitter and signaling molecule. Here, we discuss recent findings that point towards a possible role for GABA as a signaling molecule in plants.  相似文献   
35.
A highly constrained pseudo-tetrapeptide (OC252-324) further defines a new allosteric binding site located near the center of fructose-1,6-bisphosphatase. In a crystal structure, pairs of inhibitory molecules bind to opposite faces of the enzyme tetramer. Each ligand molecule is in contact with three of four subunits of the tetramer, hydrogen bonding with the side chain of Asp187 and the backbone carbonyl of residue 71, and electrostatically interacting with the backbone carbonyl of residue 51. The ligated complex adopts a quaternary structure between the canonical R- and T-states of fructose-1,6-bisphosphatase, and yet a dynamic loop essential for catalysis (residues 52-72) is in a conformation identical to that of the T-state enzyme. Inhibition by the pseudo-tetrapeptide is cooperative (Hill coefficient of 2), synergistic with both AMP and fructose 2,6-bisphosphate, noncompetitive with respect to Mg2+, and uncompetitive with respect to fructose 1,6-bisphosphate. The ligand dramatically lowers the concentration at which substrate inhibition dominates the kinetics of fructose-1,6-bisphosphatase. Elevated substrate concentrations employed in kinetic screens may have facilitated the discovery of this uncompetitive inhibitor. Moreover, the inhibitor could mimic an unknown natural effector of fructose-1,6-bisphosphatase, as it interacts strongly with a conserved residue of undetermined functional significance.  相似文献   
36.
37.
Nelson SW  Iancu CV  Choe JY  Honzatko RB  Fromm HJ 《Biochemistry》2000,39(36):11100-11106
Wild-type porcine fructose-1,6-bisphosphatase (FBPase) has no tryptophan residues. Hence, the mutation of Try57 to tryptophan places a unique fluorescent probe in the structural element (loop 52-72) putatively responsible for allosteric regulation of catalysis. On the basis of steady-state kinetics, circular dichroism spectroscopy, and X-ray crystallography, the mutation has little effect on the functional and structural properties of the enzyme. Fluorescence intensity from the Trp57 mutant is maximal in the presence of divalent cations, fructose 6-phosphate and orthophosphate, which together stabilize an R-state conformation in which loop 52-72 is engaged with the active site. The level of fluorescence emission decreases monotonically with increasing levels of AMP, an allosteric inhibitor, which promotes the T-state, disengaged-loop conformation. The titration of various metal-product complexes of the Trp57 mutant with fructose 2,6-bisphosphate (F26P(2)) causes similar decreases in fluorescence, suggesting that F26P(2) and AMP individually induce similar conformational states in FBPase. Fluorescence spectra, however, are sensitive to the type of divalent cation (Zn(2+), Mn(2+), or Mg(2+)) and suggest conformations in addition to the R-state, loop-engaged and T-state, loop-disengaged forms of FBPase. The work presented here demonstrates the utility of fluorescence spectroscopy in probing the conformational dynamics of FBPase.  相似文献   
38.
Occludin is an integral membrane protein with four transmembrane domains that is exclusively localized at tight junction (TJ) strands. Here, we describe the generation and analysis of mice carrying a null mutation in the occludin gene. Occludin -/- mice were born with no gross phenotype in the expected Mendelian ratios, but they showed significant postnatal growth retardation. Occludin -/- males produced no litters with wild-type females, whereas occludin -/- females produced litters normally when mated with wild-type males but did not suckle them. In occludin -/- mice, TJs themselves did not appear to be affected morphologically, and the barrier function of intestinal epithelium was normal as far as examined electrophysiologically. However, histological abnormalities were found in several tissues, i.e., chronic inflammation and hyperplasia of the gastric epithelium, calcification in the brain, testicular atrophy, loss of cytoplasmic granules in striated duct cells of the salivary gland, and thinning of the compact bone. These phenotypes suggested that the functions of TJs as well as occludin are more complex than previously supposed.  相似文献   
39.
Members of bone morphogenetic proteins (BMPs) play important roles in many aspects of vertebrate embryogenesis. In developing limbs, BMPs have been implicated in control of anterior-posterior patterning, outgrowth, chondrogenesis, and apoptosis. These diverse roles of BMPs in limb development are apparently mediated by different BMP receptors (BMPR). To identify the developmental processes in mouse limb possibly contributed by BMP receptor-IB (BMPR-IB), we generated transgenic mice misexpressing a constitutively active Bmpr-IB (caBmpr-IB). The transgene driven by the mouse Hoxb-6 promoter was ectopically expressed in the posterior mesenchyme of the forelimb bud, the lateral plate mesoderm, and the whole mesenchyme of the hindlimb bud. While the forelimbs appeared normal, the transgenic hindlimbs exhibited several phenotypes, including bifurcation, preaxial polydactyly, and posterior transformation of the anterior digit. However, the size of bones in the transgenic limbs seemed unaltered. Defects in sternum and ribs were also found. The bifurcation in the transgenic hindlimb occurred early in the limb development (E10.5) and was associated with extensive cell death in the mesenchyme and occasionally in the apical ectodermal ridge (AER). Sonic hedgehog (Shh) and Patched (Ptc) expression appeared unaffected in the transgenic limb buds, suggesting that the BMPR-IB mediated signaling pathway is downstream from Shh. However, ectopic Fgf4 expression was found in the anterior AER, which may account for the duplication of the anterior digit. An ectopic expression of Gremlin found in the transgenic limb bud would be responsible for the ectopic Fgf4 expression. The observations that Hoxd-12 and Hoxd-13 expression patterns were extended anteriorly provide a molecular basis for the posterior transformation of the anterior digit. Together these results suggest that BMPR-IB is the endogenous receptor to mediate the role of BMPs in anterior-posterior patterning and apoptosis in mouse developing limb. In addition, BMPR-IB may represent a critical component in the Shh/FGF4 feedback loop by regulating Gremlin expression.  相似文献   
40.
Parasitic worms survive within their immunocompetent hosts by modulating their immune system and by inhibiting inflammatory responses directed against the parasites. This immunomodulation has a spill over effect and also inhibits inflammatory responses originating from other causes. For this reason, persons who are infected with certain species of worms show a lower rate of allergic diseases as compared to persons who are free of parasites. In the same line, studies in mouse models revealed that many inflammatory diseases can be treated by worm infections. This effect is among others owing to specific proteins that are released by the worms. Such secreted immunomodulators, shaped by co‐evolution between parasites and their hosts, could become lead compounds for the development of new therapies against allergic and inflammatory diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号