全文获取类型
收费全文 | 120篇 |
免费 | 6篇 |
专业分类
126篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2019年 | 1篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 8篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 9篇 |
2009年 | 6篇 |
2008年 | 8篇 |
2007年 | 6篇 |
2006年 | 6篇 |
2005年 | 8篇 |
2004年 | 5篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 7篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1971年 | 1篇 |
1970年 | 2篇 |
1968年 | 1篇 |
排序方式: 共有126条查询结果,搜索用时 15 毫秒
101.
Dmitry N. Ivankov Samuel H. Payne Michael Y. Galperin Stefano Bonissone Pavel A. Pevzner Dmitrij Frishman 《Environmental microbiology》2013,15(4):983-990
Over the last 5 years proteogenomics (using mass spectroscopy to identify proteins predicted from genomic sequences) has emerged as a promising approach to the high‐throughput identification of protein N‐termini, which remains a problem in genome annotation. Comparison of the experimentally determined N‐termini with those predicted by sequence analysis tools allows identification of the signal peptides and therefore conclusions on the cytoplasmic or extracytoplasmic (periplasmic or extracellular) localization of the respective proteins. We present here the results of a proteogenomic study of the signal peptides in Escherichia coli K‐12 and compare its results with the available experimental data and predictions by such software tools as SignalP and Phobius. A single proteogenomics experiment recovered more than a third of all signal peptides that had been experimentally determined during the past three decades and confirmed at least 31 additional signal peptides, mostly in the known exported proteins, which had been previously predicted but not validated. The filtering of putative signal peptides for the peptide length and the presence of an eight‐residue hydrophobic patch and a typical signal peptidase cleavage site proved sufficient to eliminate the false‐positive hits. Surprisingly, the results of this proteogenomics study, as well as a re‐analysis of the E. coli genome with the latest version of SignalP program, show that the fraction of proteins containing signal peptides is only about 10%, or half of previous estimates. 相似文献
102.
We present a simple Monte Carlo method for estimating the age of the most
recent common ancestor (MRCA) of a sample of DNA sequences. We show that
Templeton's (1993) estimator of the age of the MRCA based on the maximum
number of nucleotide differences between two sequences in a sample is
inaccurate, and we demonstrate the new method by reanalyzing a sample of
DNA sequences from human Y chromosomes and a sample of human Alu sequences.
相似文献
103.
The thermal inactivation of immobilized cholinesterase enzymes (ChE) in solid matrices where the protein unfolding is blocked was studied, thus enabling investigation of the kinetics of the inactivation process directly from the native structure to the inactivated state. The thermal inactivation of butyrylcholinesterase (BChE), recombinant human acetylcholinesterase (rHuAChE), and eel acetylcholinesterase (AChE) enzymes was studied in dry films composed of poly(vinyl pyrollidone) (PVP), bovine serum albumin (BSA) and trehalose at 60 degrees -120 degrees C. The kinetics follows a bi-exponential decay equation representing a combination of fast and slow processes. The activation enthalpy DeltaH(#) and the activation entropy DeltaS(#) for each of the three enzymes have been evaluated. The values of DeltaH(#) for the fast process and for the slow process of BChE are 33+/-3, and 28+/-2 kcal/mol, respectively, and the values of DeltaS(#) are 0.84+/-0.04, and -18.2+/-0.5 cal/deg, respectively. The appropriate value of DeltaH(#) for rHuAChE is 26+/-2 Kcal/mol, for both processes and the values of DeltaS(#) are -17.6+/-0.9, and -23.0+/-0.9 cal/deg, respectively. Similarly, the values of DeltaH(#) for eelAChE are 30+/-3, 31+/-1 kcal/mol, and the values of DeltaS(#) are -6.7+/-0.5, -9.1+/-0.2 cal/deg respectively. 相似文献
104.
Stefka Tyanova Jürgen Cox Jesper Olsen Matthias Mann Dmitrij Frishman 《PLoS computational biology》2013,9(1)
Phosphorylation at specific residues can activate a protein, lead to its localization to particular compartments, be a trigger for protein degradation and fulfill many other biological functions. Protein phosphorylation is increasingly being studied at a large scale and in a quantitative manner that includes a temporal dimension. By contrast, structural properties of identified phosphorylation sites have so far been investigated in a static, non-quantitative way. Here we combine for the first time dynamic properties of the phosphoproteome with protein structural features. At six time points of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels, whereas regions with predominantly regular secondary structures retain more constant phosphorylation levels. The two groups show preferences for different amino acids in their kinase recognition motifs - proline and other disorder-associated residues are enriched in the former group and charged residues in the latter. Furthermore, these preferences scale with the degree of disorderedness, from regular to irregular and to disordered structures. Our results suggest that the structural organization of the region in which a phosphorylation site resides may serve as an additional control mechanism. They also imply that phosphorylation sites are associated with different time scales that serve different functional needs. 相似文献
105.
Alternative splicing and protein function 总被引:1,自引:0,他引:1
AD?Neverov II?Artamonova RN?Nurtdinov D?Frishman MS?GelfandEmail author AA?Mironov 《BMC bioinformatics》2005,6(1):266
Background
Alternative splicing is a major mechanism of generating protein diversity in higher eukaryotes. Although at least half, and probably more, of mammalian genes are alternatively spliced, it was not clear, whether the frequency of alternative splicing is the same in different functional categories. The problem is obscured by uneven coverage of genes by ESTs and a large number of artifacts in the EST data. 相似文献106.
Mewes HW Frishman D Gruber C Geier B Haase D Kaps A Lemcke K Mannhaupt G Pfeiffer F Schüller C Stocker S Weil B 《Nucleic acids research》2000,28(1):37-40
The Munich Information Center for Protein Sequences (MIPS-GSF), Martinsried, near Munich, Germany, continues its longstanding tradition to develop and maintain high quality curated genome databases. In addition, efforts have been intensified to cover the wealth of complete genome sequences in a systematic, comprehensive form. Bioinformatics, supporting national as well as European sequencing and functional analysis projects, has resulted in several up-to-date genome-oriented databases. This report describes growing databases reflecting the progress of sequencing the Arabidopsis thaliana (MATDB) and Neurospora crassa genomes (MNCDB), the yeast genome database (MYGD) extended by functional analysis data, the database of annotated human EST-clusters (HIB) and the database of the complete cDNA sequences from the DHGP (German Human Genome Project). It also contains information on the up-to-date database of complete genomes (PEDANT), the classification of protein sequences (ProtFam) and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database. These databases can be accessed through the MIPS WWW server (http://www. mips.biochem.mpg.de). 相似文献
107.
Fold designability has been estimated by the number of families contained in that fold. Here, we show that among orthologous proteins, sequence divergence is higher for folds with greater numbers of families. Folds with greater numbers of families also tend to have families that appear more often in the proteome and greater promiscuity (the number of unique “partner” folds that the fold is found with within the same protein). We also find that many disease-related proteins have folds with relatively few families. In particular, a number of these proteins are associated with diseases occurring at high frequency. These results suggest that family counts reflect how certain structures are distributed in nature and is an important characteristic associated with many human diseases. 相似文献
108.
Bjorn?WH?van Heumen Hennie?MJ?Roelofs René?HM?te Morsche Fokko?M?Nagengast Wilbert?HM?PetersEmail author 《Orphanet journal of rare diseases》2013,8(1):181
Background
Familial adenomatous polyposis (FAP) is a disease characterized by the development of hundreds to thousands of adenomatous polyps in the colorectum early in life. Virtually all patients with FAP will develop colorectal cancer before the age of 40 to 50 years, unless prophylactic colectomy is performed, which significantly improves their prognosis. The mortality pattern has changed and duodenal cancer now is one of the main cancer-related causes of death in these patients. Practically all patients with FAP develop premalignant duodenal adenomas, which may develop to duodenal cancer in approximately 3-7% of patients. Duodenal cancer in patients with FAP has a poor prognosis. The clinical challenge is to identify patients at high-risk for duodenal carcinoma. Chemoprevention would be desirable to avoid duodenectomy. The main goal of this study is to identify risk markers in normal duodenal mucosa of patients with FAP, that could help identify patients at increased risk for malignant transformation.Methods
Messenger RNA (mRNA) levels of glutathione S-transferase A1 (GSTA1), glutathione S-transferase P1 (GSTP1), KIAA1199, E-cadherin, peroxisome proliferative activated receptor δ (PPARδ), caspase-3, cyclin D1, β-catenin, and cyclooxygenase-2 (COX-2) were measured in duodenal mucosa, using the QuantiGene 2.0 Plex assay. Levels in normal appearing mucosa of patients with FAP (n?=?37) were compared with levels in non-FAP patient controls (n?=?16). In addition, levels before and after treatment with either celecoxib & ursodeoxycholic acid (UDCA, n?=?14) or celecoxib & placebo (n?=?13) were evaluated in patients with FAP.Results
mRNA levels of glutathione S-transferase A1 (28.16% vs. 38.24%, p?=?0.008) and caspase-3 (3.30% vs. 5.31%, p?=?0.001) were significantly lower in patients with FAP vs. non-FAP patient controls, respectively. COX-2 mRNA levels in normal duodenal mucosa of patients with FAP were found to be unexpectedly low. None of the potential risk markers was influenced by celecoxib or celecoxib & UDCA.Conclusions
Protection against toxins and carcinogens (GSTA1) and apoptosis (caspase-3) is low in patients with FAP, which could contribute to increased susceptibility for malignant transformation of duodenal mucosa.Trial registration
http://ClinicalTrials.gov number NCT00808743109.
Nuno A Fonseca Cristina P Vieira Peter WH Holland Jorge Vieira 《BMC evolutionary biology》2008,8(1):200
Background
Although homeobox genes have been the subject of many studies, little is known about the main amino acid changes that occurred early in the evolution of genes belonging to different classes. 相似文献110.
High-quality mapping of genomic regions and genes between two organisms is an indispensable prerequisite for evolutionary analyses and comparative genomics. Existing approaches to this problem focus on either delineating orthologs or finding extended sequence regions of common evolutionary origin (syntenic blocks). We propose SyntenyMapper, a novel tool for refining predefined syntenic regions. SyntenyMapper creates a set of blocks with conserved gene order between two genomes and finds all minor rearrangements that occurred since the evolutionary split of the two species considered. We also present TrackMapper, a SyntenyMapper-based tool that allows users to directly compare genome features, such as histone modifications, between two organisms, and identify genes with highly conserved features. We demonstrate SyntenyMapper''s advantages by conducting a large-scale analysis of micro-rearrangements within syntenic regions of 25 eukaryotic species. Unsurprisingly, the number and length of syntenic regions is correlated with evolutionary distance, while the number of micro-rearrangements depends only on the size of the harboring region. On the other hand, the size of rearranged regions remains relatively constant regardless of the evolutionary distance between the organisms, implying a length constraint in the rearrangement process. SyntenyMapper is a useful software tool for both large-scale and gene-centric genome comparisons. 相似文献