首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   702篇
  免费   59篇
  2023年   3篇
  2022年   6篇
  2021年   14篇
  2020年   6篇
  2019年   11篇
  2018年   18篇
  2017年   9篇
  2016年   27篇
  2015年   37篇
  2014年   54篇
  2013年   40篇
  2012年   60篇
  2011年   67篇
  2010年   44篇
  2009年   37篇
  2008年   43篇
  2007年   38篇
  2006年   23篇
  2005年   33篇
  2004年   25篇
  2003年   27篇
  2002年   24篇
  2000年   6篇
  1999年   7篇
  1998年   8篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   7篇
  1989年   9篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   7篇
  1979年   3篇
  1977年   3篇
  1974年   2篇
  1972年   2篇
  1969年   2篇
  1968年   4篇
  1967年   2篇
  1956年   2篇
  1939年   1篇
  1935年   1篇
  1927年   1篇
排序方式: 共有761条查询结果,搜索用时 15 毫秒
21.
In this article, I explore the growing popularity of volunteering in China. I delineate several factors that play into the phenomenon, including students' desire to break out of strict routines, to engage in meaningful activities, to meet people, and to contribute to China's development. Linking these issues to the socio-political, economic, and ideological transformations in China, I show that we cannot meaningfully distinguish between altruistic and self-interested motivations to volunteer. For the students volunteering is a means to transform themselves into modern, entrepreneurial, and responsible selves, necessary to meet the challenges of urban life in China today. Yet, volunteering, encouraged and framed by the government, is also a ‘technology of power’, a means to nurture self-reliant and socially responsible individuals. I show that volunteerism is not simply the reflection of a new ‘governmentality’ but an encounter in which the very relationship between state and society is constantly negotiated.  相似文献   
22.

Background

Malawi ratified a compulsory birth and death registration system in 2009. Until it captures complete coverage of vital events, Malawi relies on other data sources to calculate mortality estimates. We tested a community-based method to estimate annual under-five mortality rates (U5MR) through the Real-Time Monitoring of Under-Five Mortality (RMM) project in Malawi. We implemented RMM in two phases, and conducted an independent evaluation of phase one after 21 months of implementation. We present results of the phase two validation that covers the full project time span, and compare the results to those of the phase one validation.

Methods and Findings

We assessed the completeness of the counts of births and deaths and the accuracy of disaggregated U5MR from the community-based method against a retrospective full pregnancy history for rolling twelve-month periods after the independent evaluation. We used full pregnancy histories collected through household interviews carried out between November 2013 and January 2014 as the validation data source. Health Surveillance Agents (HSAs) across the 160 catchment areas submitted routine reports on pregnancies, births, and deaths consistently. However, for the 15-month implementation period post-evaluation, average completeness of birth event reporting was 76%, whereas average completeness of death event reporting was 67% relative to that expected from a comparable pregnancy history. HSAs underestimated the U5MR by an average of 21% relative to that estimated from a comparable pregnancy history.

Conclusions

On a medium scale, the community-based RMM method in Malawi produced substantial underestimates of annualized U5MR relative to those obtained from a full pregnancy history, despite the additional incentives and quality-control activities. We were not able to achieve an optimum level of incentive and support to make the system work while ensuring sustainability. Lessons learned from the implementation of RMM can inform programs supporting community-based interventions through HSAs in Malawi.  相似文献   
23.
The formation of undesired high molecular weight species such as dimers is an important quality attribute for therapeutic monoclonal antibody formulations. Therefore, the thorough understanding of mAb dimerization and the detailed characterization mAb dimers is of great interest for future pharmaceutical development of therapeutic antibodies. In this work, we focused on the analyses of different mAb dimers regarding size, surface properties, chemical identity, overall structure and localization of possible dimerization sites. Dimer fractions of different mAbs were isolated to a satisfactory purity from bulk material and revealed 2 predominant overall structures, namely elongated and compact dimer forms. The elongated dimers displayed one dimerization site involving the tip of the Fab domain. Depending on the stress applied, these elongated dimers are connected either covalently or non-covalently. In contrast, the compact dimers exhibited non-covalent association. Several interaction points were detected for the compact dimers involving the hinge region or the base of the Fab domain. These results indicate that mAb dimer fractions are rather complex and may contain more than one kind of dimer. Nevertheless, the overall appearance of mAb dimers suggests the existence of 2 predominant dimeric structures, elongated and compact, which are commonly present in preparations of therapeutic mAbs.  相似文献   
24.
25.
The Sandfish's Skin: Morphology, Chemistry and Reconstruction   总被引:1,自引:0,他引:1  
The sandfish is a lizard having the remarkable ability to move in desert sand in a swimming-like fashion. The most outstanding adaptations to this mode of life are the low friction behaviour and the extensive abrasion resistance of the sandfish skin against sand, outperforming even steel. We investigated the topography, the composition and the mechanical properties of sandfish scales. These consist of glycosylated keratins with high amount of sulphur but no hard inorganic material, such as silicates or lime. Remarkably, atomic force microscopy shows an almost complete absence of attractive forces between the scale surface and a silicon tip, suggesting that this is responsible for the unusual tribological properties. The unusual glycosylation of the keratins was found to be absolutely necessary for the described phenomenon. The scales were dissolved and reconstituted on a polymer surface resulting in properties similar to the original scale. Thus, we provide a pathway towards exploitation of the reconstituted scale material for future engineering applications.  相似文献   
26.
Today''s major excitement in biology centers on signaling: How can a cell or organism measure the myriad of environmental cues, integrate it, and acclimate to the new conditions? Hormonal signals and second messengers are in the focus of most of these studies, e.g., regulation of glucose transporter GLUT4 cycling by insulin, or regulation of plant growth by auxin or brassinosteroids.13 In comparison, we generally assume that we know almost everything about basic metabolism since it has been studied for many decades; for example we know since the early 80s that allosteric regulation by fructose-2,6-bisphophate plays an important role in regulating glycolysis in plants and animals.4 This may be the reason why studies of metabolism appear to be a bit out of fashion. But if we look to other organisms such as E. coli or yeast, we rapidly realize that metabolism is controlled by complex interconnected signaling networks, and that we understand little of these signaling networks in humans and plants.5,6 As it turns out, the cell registers many metabolites, and flux through the pathways is regulated using complex signaling networks that involve calcium as well as hormones.Key Words: flux, fluxome, glucose, glutamate, phosphate, sucrose, fluorescence resonance energy transfer, biosensorOne of the reasons for the fable for hormones lies in the simple fact that it is easier to observe macroscopic changes, such as changes in the architecture of a plant than to determine metabolite levels, but also here new tools are urgently needed that allow quantification of these small molecules. Visualization of starch levels provided a significant advance, and in combination with mutant screens allowed to identify fundamental components of starch metabolism.79 The biggest advance for the signaling field was the development of advanced chemical and genetically encoded calcium dyes.1012 No such dyes are available for hormones or metabolites, as soon as we try to determine levels of metabolites (or signaling molecules), we run into the issues of compartmentation and cellular differences in tissues. Today, the same enzymatic assays used decades ago are still widely used to determine metabolite levels. Although significant advances in chromatography and mass spectrometry based metabolite analysis have moved the study of metabolism to ‘omics’ era, compartmentalization of metabolism still presents a major challenge. Especially the large vacuoles of plant cells are a major obstacle, since even fractionation studies suffer from contamination. Moreover, with the current set of tools it is not possible to determine the dynamic changes in metabolite levels in different subcellular compartments in real time in vivo. Radiotracers have helped a lot to identify and quantify intermediates and to assemble pathways, originally using pulse labeling followed by paper chromatography. Today 13C-labeling is used together with mass spectrometry to obtain insights into metabolic flux control.13 This tool set for the first time enabled the comparison of mutants and study regulatory networks involved in sugar signaling. While significant, advances in radiotracer experiments do not provide cellular or subcellular information and only limited temporal resolution, they do provide efficient means for studying metabolite fluxes through complex and/or not well-defined pathways. Thus there is a clear need for metabolite specific dyes that can be targeted to subcellular compartments and that would enable flux measurements in response to environmental cues helping to push metabolic research back into the focus of signaling-related biology.In 2002, we developed the first prototype “metabolic dye” FRET sensor for maltose.14,15 A similar glucose sensor was recently employed for measuring tracer-independent transport of glucose across the ER membrane of liver cells.16 After resolving some issues such as low signal-to-noise and gene silencing in plants, we are now able to compare glucose levels between cells in an intact root in real time.17 The parallel development of sucrose and phosphate sensors complements the set of tools, in future experiments providing a comparison of sucrose, phosphate and glucose fluxes in intact tissues with both temporal (below seconds) and spatial resolution (cellular and subcellular).18,19The first experiments already led to a big surprise: glucose supplied to the root is rapidly taken up and is rapidly metabolized.17 Roots expressing the highest affinity sensor FLIPglu170n responded to glucose perfusion suggesting that the steady state glucose level in the root is less than 100 nM, the estimated detection limit for this sensor in these first experiments. The first experiments were limited by the mixing kinetics in the bath used for perfusion, while improvement of the chamber now allow for faster for glucose exchange. We estimate that glucose levels fall from a steady state level of approximately 5 mM in the cytosol when perfused with 5 mM glucose to below 100 nM in about three minutes. For the sensor with an affinity of 600 µM the rate of glucose accumulation, which is composed of the various rates that affect the steady state in the cytosol such as metabolism, compartmentation and transport across the plasma membrane, is in the range of 527 ± 77 µM glucose/min and that for glucose removal is 317 ± 37 (Fig. 1; Chaudhuri B, Frommer WB, unpublished). Questions that arise are: Which transport systems drive uptake? How much does the vacuole contribute to the observed flux and steady state levels? Is the capacity of hexokinase at levels below its Km still sufficient to phosphorylate glucose efficient enough to pull glucose below 100 nM or does hexokinase have different properties in vivo compared to what we know from the purified enzyme? Are there different transporters and enzymes contributing to flux in the low (1–10 mM) and the ultrahigh affinity (low µM) phases? Are there spatial differences in the root? Why do roots take up glucose so efficiently in the first place? The combination of the sensors with information from the expression-LEDs from Birnbaum and Benfey20 and specific knock-out mutants should help answering some of these questions.Open in a separate windowFigure 1Quantitative analysis of glucose flux from an Arabidopsis root expressing FLIPglu-600µΔ13, a FRET sensor for glucose with an affinity of 600 µM. The root of a 10 day-old seedling was placed into a perfusion chamber and perfused with hydroponic medium with or without 5 mM glucose. eCFP was excited and emission was recorded for eCFP and eYFP every 10 seconds (essentially as decsribed in ref. 17). The emission intensities for a region-of-interest were averaged and the emission ratio was determined at the two wavelengths for each image of a time series and plotted on the Y-axis against time on the X-axis. Addition of glucose is indicated.Another big surprise is the dramatic gradient of glucose across the plasma membrane, which has important implications for our understanding of transport processes across the plasma membrane as well as the intracellular membranes.17 Information about the gradients is relevant in the context of apo- and symplasmic unloading routes in roots21 and the contribution of proton-coupled transporters in cellular export.22 It will thus be interesting to follow the extracellular levels using surface-anchored sensors. Now that besides high sensitivity glucose FLIPs17 we also generated nanosensors for sucrose19 and phosphate,18 complementing the similar tool sets for calcium23 and pH,24 it is possible to compare multiple parameters and to follow flux at different levels and to calibrate against other influences.The improvements of the signal-to-noise ratio of the FRET-based metabolite sensors25 makes the FLIPs a standard tool for every lab interested in measuring ion-, sugar- or amino acid flux in living cells. Since the nanosensors are genetically encoded, they can be used to characterize intracellular fluxes16,26 in any organism for which transformation protocols have been established. The existing sets of sensors are simple to use, constructs are available through Addgene and Arabidopsis lines from the Arabidopsis Stock Center. Detailed instructions for imaging can be found at: http://carnegiedpb.stanford.edu/research/frommer/research_frommer_protocols.php. These tools will hopefully become a standard system not only for physiological analyses, but in addition provide a new way for high throughput fluxomics studies.  相似文献   
27.
The sandfish is a lizard having the remarkable ability to move in desert sand in a swimming-like fashion. The most out-standing adaptations to this mode of life are the low friction behaviour and the extensive abrasion resistance of the sandfish skin against sand, outperforming even steel. We investigated the topography, the composition and the mechanical properties of sandfish scales. These consist of glycosylated keratins with high amount of sulphur but no hard inorganic material, such as silicates or lime. Remarkably, atomic force microscopy shows an almost complete absence of attractive forces between the scale surface and a silicon tip, suggesting that this is responsible for the unusual tribological properties. The unusual glycosylation of the keratins was found to be absolutely necessary for the described phenomenon. The scales were dissolved and reconstituted on a polymer surface resulting in properties similar to the original scale. Thus, we provide a pathway towards exploitation of the reconstituted scale material for future engineering applications.  相似文献   
28.
Using the proteomic tandem affinity purification (TAP) method, we have purified the Saccharomyces cerevisie U2 snRNP-associated splicing factors SF3a and SF3b. While SF3a purification revealed only the expected subunits Prp9p, Prp11p and Prp21p, yeast SF3b was found to contain only six subunits, including previously known components (Rse1p, Hsh155p, Cus1p, Hsh49p), the recently identified Rds3p factor and a new small essential protein (Ysf3p) encoded by an unpredicted split ORF in the yeast genome. Surprisingly, Snu17p, the proposed yeast orthologue of the seventh human SF3b subunit, p14, was not found in the yeast complex. TAP purification revealed that Snu17p, together with Bud13p and a newly identified factor, Pml1p/Ylr016c, form a novel trimeric complex. Subunits of this complex were not essential for viability. However, they are required for efficient splicing in vitro and in vivo. Furthermore, inactivation of this complex causes pre-mRNA leakage from the nucleus. The corresponding complex was named pre-mRNA REtention and Splicing (RES). The presence of RES subunit homologues in numerous eukaryotes suggests that its function is evolutionarily conserved.  相似文献   
29.
Atypical protein kinase C (aPKC) isoforms have been suggested to mediate insulin effects on glucose transport in adipocytes and other cells. To more rigorously test this hypothesis, we generated mouse embryonic stem (ES) cells and ES-derived adipocytes in which both aPKC-lambda alleles were knocked out by recombinant methods. Insulin activated PKC-lambda and stimulated glucose transport in wild-type (WT) PKC-lambda(+/+), but not in knockout PKC-lambda(-/-), ES cells. However, insulin-stimulated glucose transport was rescued by expression of WT PKC-lambda in PKC-lambda(-/-) ES cells. Surprisingly, insulin-induced increases in both PKC-lambda activity and glucose transport were dependent on activation of proline-rich tyrosine protein kinase 2, the ERK pathway, and phospholipase D (PLD) but were independent of phosphatidylinositol 3-kinase (PI3K) in PKC-lambda(+/+) ES cells. Interestingly, this dependency was completely reversed after differentiation of ES cells to adipocytes, i.e. insulin effects on PKC-lambda and glucose transport were dependent on PI3K, rather than proline-rich tyrosine protein kinase 2/ERK/PLD. As in ES cells, insulin effects on glucose transport were absent in PKC-lambda(-/-) adipocytes but were rescued by expression of WT PKC-lambda in these adipocytes. Our findings suggest that insulin activates aPKCs and glucose transport in ES cells by a newly recognized PI3K-independent ERK/PLD-dependent pathway and provide a compelling line of evidence suggesting that aPKCs are required for insulin-stimulated glucose transport, regardless of whether aPKCs are activated by PI3K-dependent or PI3K-independent mechanisms.  相似文献   
30.
Using optimized computer models of arterial trees we demonstrate that flow heterogeneity is a necessary consequence of a uniform shear stress distribution. Model trees are generated and optimized under different modes of boundary conditions. In one mode flow is delivered to the tissue as homogeneously as possible. Although this primary goal can be achieved, resulting shear stresses between blood and the vessel walls show very large spread. In a second mode, models are optimized under the condition of uniform shear stress in all segments which in turn renders flow distribution heterogeneous. Both homogeneous perfusion and uniform shear stress are desirable goals in real arterial trees but each of these goals can only be approached at the expense of the other. While the present paper refers only to optimized models, we assume that this dual relation between the heterogeneities in flow and shear stress may represent a more general principle of vascular systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号