首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   12篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   12篇
  2011年   14篇
  2010年   9篇
  2009年   9篇
  2008年   6篇
  2007年   15篇
  2006年   8篇
  2005年   3篇
  2004年   1篇
  2002年   3篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   1篇
  1974年   5篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1950年   1篇
  1933年   1篇
  1928年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
71.

Background

Next generation sequencing technologies allow to obtain at low cost the genomic sequence information that currently lacks for most economically and ecologically important organisms. For the mallard duck genomic data is limited. The mallard is, besides a species of large agricultural and societal importance, also the focal species when it comes to long distance dispersal of Avian Influenza. For large scale identification of SNPs we performed Illumina sequencing of wild mallard DNA and compared our data with ongoing genome and EST sequencing of domesticated conspecifics. This is the first study of its kind for waterfowl.

Results

More than one billion base pairs of sequence information were generated resulting in a 16× coverage of a reduced representation library of the mallard genome. Sequence reads were aligned to a draft domesticated duck reference genome and allowed for the detection of over 122,000 SNPs within our mallard sequence dataset. In addition, almost 62,000 nucleotide positions on the domesticated duck reference showed a different nucleotide compared to wild mallard. Approximately 20,000 SNPs identified within our data were shared with SNPs identified in the sequenced domestic duck or in EST sequencing projects. The shared SNPs were considered to be highly reliable and were used to benchmark non-shared SNPs for quality. Genotyping of a representative sample of 364 SNPs resulted in a SNP conversion rate of 99.7%. The correlation of the minor allele count and observed minor allele frequency in the SNP discovery pool was 0.72.

Conclusion

We identified almost 150,000 SNPs in wild mallards that will likely yield good results in genotyping. Of these, ~101,000 SNPs were detected within our wild mallard sequences and ~49,000 were detected between wild and domesticated duck data. In the ~101,000 SNPs we found a subset of ~20,000 SNPs shared between wild mallards and the sequenced domesticated duck suggesting a low genetic divergence. Comparison of quality metrics between the total SNP set (122,000 + 62,000 = 184,000 SNPs) and the validated subset shows similar characteristics for both sets. This indicates that we have detected a large amount (~150,000) of accurately inferred mallard SNPs, which will benefit bird evolutionary studies, ecological studies (e.g. disentangling migratory connectivity) and industrial breeding programs.
  相似文献   
72.

Introduction  

Both cardiovascular disease and osteoporosis are important causes of morbidity and mortality in the elderly. The co-occurrence of cardiovascular disease and osteoporosis prompted us to review the evidence of an association between cardiovascular (CV) disease and osteoporosis and potential shared common pathophysiological mechanisms.  相似文献   
73.
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, The HD Consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG-repeat-expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease-associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal, as assessed using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a human stem cell platform for screening new candidate therapeutics.  相似文献   
74.
Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N2) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N2 fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N2 fixation capacity. Further comparisons to all available cyanobacterial genomes covering almost the entire evolutionary branch revealed a common minimal gene set for each of these cyanobacterial traits.  相似文献   
75.
76.
Multimodal neuronal maps, combining input from two or more sensory systems, play a key role in the processing of sensory and motor information. For such maps to be of any use, the input from all participating modalities must be calibrated so that a stimulus at a specific spatial location is represented at an unambiguous position in the multimodal map. Here we discuss two methods based on supervised spike-timing-dependent plasticity (STDP) to gauge input from different sensory modalities so as to ensure a proper map alignment. The first uses an excitatory teacher input. It is therefore called excitation-mediated learning. The second method is based on an inhibitory teacher signal, as found in the barn owl, and is called inhibition-mediated learning. Using detailed analytical calculations and numerical simulations, we demonstrate that inhibitory teacher input is essential if high-quality multimodal integration is to be learned rapidly. Furthermore, we show that the quality of the resulting map is not so much limited by the quality of the teacher signal but rather by the accuracy of the input from other sensory modalities.  相似文献   
77.
Design and chemical synthesis of de novo heme proteins with enzymatic activity on cellulose membranes is described. 352 antiparallel four-helix bundle proteins with a single histidine for heme ligation were assembled from three different sets of short amphipathic helices on membrane-bound peptide templates. The templates were coupled by linkers to cellulose membranes of microplate format, which could be cleaved for control of intermediate and final products. The incorporation of heme and the heme oxygenase activity of the 352 proteins were monitored by measuring UV-visible spectra directly on the cellulose. The kinetics of the heme oxygenase reaction was studied by monitoring the decrease of the Soret band and the transient absorbance of verdoheme being an intermediate product in the formation of biliverdin. Four of the proteins covering a broad range of the enzymatic rate constants were selected and synthesized in solution for further characterization. Detailed studies by redox potentiometry, analytical ultracentrifugation, and electron paramagnetic resonance spectroscopy yielded information about the aggregation state of the proteins, the spin state and the putative coordination environment of the iron. The amount of five-coordinated high-spin iron and a positive reduction potential were found to promote the oxygenase activity of the proteins.  相似文献   
78.
BackgroundBread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines.ResultsA sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies.ConclusionsEvidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0606-4) contains supplementary material, which is available to authorized users.  相似文献   
79.
The large numbers of samples processed in breeding and biodiversity programmes require the development of efficient methods for the nondestructive evaluation of basic seed properties. Near‐infrared spectroscopy is the state‐of‐the‐art solution for this analytical demand, but it also has some limitations. Here, we present a novel, rapid, accurate procedure based on time domain‐nuclear magnetic resonance (TD‐NMR), designed to simultaneously quantify a number of basic seed traits without any seed destruction. Using a low‐field, benchtop 1H‐NMR instrument, the procedure gives a high‐accuracy measurement of oil content (R2 = 0.98), carbohydrate content (R2 = 0.99), water content (R2 = 0.98) and both fresh and dry weight of seeds/grains (R2 = 0.99). The method requires a minimum of ~20 mg biomass per sample and thus enables to screen individual, intact seeds. When combined with an automated sample delivery system, a throughput of ~1400 samples per day is achievable. The procedure has been trialled as a proof of concept on cereal grains (collection of ~3000 accessions of Avena spp. curated at the IPK genebank). A mathematical multitrait selection approach has been designed to simplify the selection of outlying (most contrasting) accessions. To provide deeper insights into storage oil topology, some oat accessions were further analysed by three‐dimensional seed modelling and lipid imaging. We conclude that the novel TD‐NMR‐based screening tool opens perspectives for breeding and plant biology in general.  相似文献   
80.
Functional analysis of the mammalian genome is an enormous challenge for biomedical scientists. To facilitate this endeavour, the European Conditional Mouse Mutagenesis Program (EUCOMM) aims at generating up to 12 000 mutations by gene trapping and up to 8000 mutations by gene targeting in mouse embryonic stem (ES) cells. These mutations can be rendered into conditional alleles, allowing Cre recombinase-mediated disruption of gene function in a time- and tissue-specific manner. Furthermore, the EUCOMM program will generate up to 320 mouse lines from the EUCOMM resource and up to 20 new Cre driver mouse lines. The EUCOMM resource of vectors, mutant ES cell lines and mutant mice will be openly available to the scientific community. EUCOMM will be one of the cornerstones of an international effort to create a global mouse mutant resource.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号