首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4489篇
  免费   470篇
  2022年   36篇
  2021年   79篇
  2020年   48篇
  2019年   66篇
  2018年   69篇
  2017年   68篇
  2016年   118篇
  2015年   181篇
  2014年   195篇
  2013年   236篇
  2012年   314篇
  2011年   318篇
  2010年   176篇
  2009年   167篇
  2008年   234篇
  2007年   243篇
  2006年   239篇
  2005年   201篇
  2004年   204篇
  2003年   196篇
  2002年   181篇
  2001年   70篇
  2000年   68篇
  1999年   64篇
  1998年   85篇
  1997年   42篇
  1996年   45篇
  1995年   40篇
  1994年   41篇
  1993年   40篇
  1992年   57篇
  1991年   68篇
  1990年   42篇
  1989年   52篇
  1988年   46篇
  1987年   40篇
  1986年   46篇
  1985年   37篇
  1984年   44篇
  1983年   30篇
  1982年   40篇
  1981年   24篇
  1980年   26篇
  1978年   20篇
  1977年   19篇
  1975年   21篇
  1974年   33篇
  1973年   20篇
  1967年   18篇
  1966年   21篇
排序方式: 共有4959条查询结果,搜索用时 453 毫秒
151.
SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.  相似文献   
152.
Crop model‐specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs’ median‐projected maize and wheat yield changes were ?3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water‐use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EM?MM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EM?MM comparisons to provide a fuller picture of crop–climate response uncertainties.  相似文献   
153.
The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn’t due to the increased load per se, because actively processing a second object – in the absence of a storage requirement – also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial’s sample stimulus.  相似文献   
154.
Reduced intracranial pressure is considered a risk factor for glaucomatous optic neuropathies. All current data supporting intracranial pressure as a glaucoma risk factor comes from retrospective and prospective studies. Unfortunately, there are no relevant animal models for investigating this link experimentally. Here we report a novel rat model that can be used to study the role of intracranial pressure modulation on optic neuropathies. Stainless steel cannulae were inserted into the cisterna magna or the lateral ventricle of Sprague-Dawley and Brown Norway rats. The cannula was attached to a pressure transducer connected to a computer that recorded intracranial pressure in real-time. Intracranial pressure was modulated manually by adjusting the height of a column filled with artificial cerebrospinal fluid in relation to the animal’s head. After data collection the morphological appearance of the brain tissue was analyzed. Based on ease of surgery and ability to retain the cannula, Brown Norway rats with the cannula implanted in the lateral ventricle were selected for further studies. Baseline intracranial pressure for rats was 5.5±1.5 cm water (n=5). Lowering of the artificial cerebrospinal fluid column by 2 cm and 4 cm below head level reduced ICP to 3.7±1.0 cm water (n=5) and 1.5±0.6 cm water (n=4), a reduction of 33.0% and 72.7% below baseline. Raising the cerebrospinal fluid column by 4 cm increased ICP to 7.5±1.4 cm water (n=2) corresponding to a 38.3% increase in intracranial pressure. Histological studies confirmed correct cannula placement and indicated minimal invasive damage to brain tissues. Our data suggests that the intraventricular cannula model is a unique and viable model that can be used to study the effect of altered intracranial pressure on glaucomatous optic neuropathies.  相似文献   
155.
156.
The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins.  相似文献   
157.
Typically twin studies are used to investigate the aggregate effects of genetic and environmental influences on brain phenotypic measures. Although some phenotypic measures are highly heritable in twin studies, SNPs (single nucleotide polymorphisms) identified by genome-wide association studies (GWAS) account for only a small fraction of the heritability of these measures. We mapped the genetic variation (the proportion of phenotypic variance explained by variation among SNPs) of volumes of pre-defined regions across the whole brain, as explained by 512,905 SNPs genotyped on 747 adult participants from the Alzheimer''s Disease Neuroimaging Initiative (ADNI). We found that 85% of the variance of intracranial volume (ICV) (p = 0.04) was explained by considering all SNPs simultaneously, and after adjusting for ICV, total grey matter (GM) and white matter (WM) volumes had genetic variation estimates near zero (p = 0.5). We found varying estimates of genetic variation across 93 non-overlapping regions, with asymmetry in estimates between the left and right cerebral hemispheres. Several regions reported in previous studies to be related to Alzheimer''s disease progression were estimated to have a large proportion of volumetric variance explained by the SNPs.  相似文献   
158.
Polysialic acid (polySia), an α-2,8-glycosidically linked polymer of sialic acid, is a developmentally regulated post-translational modification predominantly found on NCAM (neuronal cell adhesion molecule). Whilst high levels are expressed during development, peripheral adult organs do not express polySia-NCAM. However, tumours of neural crest-origin re-express polySia-NCAM: its occurrence correlates with aggressive and invasive disease and poor clinical prognosis in different cancer types, notably including small cell lung cancer (SCLC), pancreatic cancer and neuroblastoma. In neuronal development, polySia-NCAM biosynthesis is catalysed by two polysialyltransferases, ST8SiaII and ST8SiaIV, but it is ST8SiaII that is the prominent enzyme in tumours. The aim of this study was to determine the effect of ST8SiaII inhibition by a small molecule on tumour cell migration, utilising cytidine monophosphate (CMP) as a tool compound. Using immunoblotting we showed that CMP reduced ST8iaII-mediated polysialylation of NCAM. Utilizing a novel HPLC-based assay to quantify polysialylation of a fluorescent acceptor (DMB-DP3), we demonstrated that CMP is a competitive inhibitor of ST8SiaII (K i = 10 µM). Importantly, we have shown that CMP causes a concentration-dependent reduction in tumour cell-surface polySia expression, with an absence of toxicity. When ST8SiaII-expressing tumour cells (SH-SY5Y and C6-STX) were evaluated in 2D cell migration assays, ST8SiaII inhibition led to significant reductions in migration, while CMP had no effect on cells not expressing ST8SiaII (DLD-1 and C6-WT). The study demonstrates for the first time that a polysialyltransferase inhibitor can modulate migration in ST8SiaII-expressing tumour cells. We conclude that ST8SiaII can be considered a druggable target with the potential for interfering with a critical mechanism in tumour cell dissemination in metastatic cancers.  相似文献   
159.
The use of fullerenes with two or more adducts as acceptors has been recently shown to enhance the performance of bulk‐heterojunction solar cells using poly(3‐hexylthiophene) (P3HT) as the donor. The enhancement is caused by a substantial increase in the open‐circuit voltage due to a rise in the fullerene lowest unoccupied molecular orbital (LUMO) level when going from monoadducts to multiadducts. While the increase in the open‐circuit voltage is obtained with many different polymers, most polymers other than P3HT show a substantially reduced photocurrent when blended with fullerene multiadducts like bis‐PCBM (bis adduct of Phenyl‐C61‐butyric acid methyl ester) or the indene C60 bis‐adduct ICBA. Here we investigate the reasons for this decrease in photocurrent. We find that it can be attributed partly to a loss in charge generation efficiency that may be related to the LUMO‐LUMO and HOMO‐HOMO (highest occupied molecular orbital) offsets at the donor‐acceptor heterojunction, and partly to reduced charge carrier collection efficiencies. We show that the P3HT exhibits efficient collection due to high hole and electron mobilities with mono‐ and multiadduct fullerenes. In contrast the less crystalline polymer Poly[[9‐(1‐octylnonyl)‐9H‐carbazole‐2,7‐diyl]‐2,5‐thiophenediyl‐2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl (PCDTBT) shows inefficient charge carrier collection, assigned to low hole mobility in the polymer and low electron mobility when blended with multiadduct fullerenes.  相似文献   
160.
Due to their unique plasmonic and optical properties, gold nanorods (GNR) have shown tremendous potential for nano-based applications extending into a variety of fields including bioimaging, sensor development, electronics, and cancer therapy. These distinctive, shape-specific properties are strongly dependent upon the GNR aspect ratio, thus producing the ability to be targeted for an application by fine-tuning their physical parameters. It is owing to their characteristic spectral signature, which is vastly different from that of a cellular setting, that GNRs are emerging as an ideal candidate for nano-based imaging applications. However, one challenge that has emerged in the field of bioimaging is the need to account for the observed plasmon coupling effect that arises from GNR agglomeration in a physiological environment. In this study, GNRs with aspect ratios of 2.5 and 6.0 were actively identified in an in vitro setting through a hyperspectral imaging (HSI) analysis; which successfully recognized and separated the light scattering pattern of these particles from that of the surrounding cells. Through inclusion of agglomerated GNR spectral patterns in the HSI spectral library, this imaging technique was able to overcome the complication of plasmon coupling, though to varying degrees. These results demonstrate the tremendous potential of GNRs coupled with HSI analysis to advance the field of nano-based sensing and imaging mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号