首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   857篇
  免费   68篇
  2022年   8篇
  2021年   13篇
  2020年   23篇
  2019年   20篇
  2018年   18篇
  2017年   23篇
  2016年   17篇
  2015年   41篇
  2014年   47篇
  2013年   60篇
  2012年   60篇
  2011年   49篇
  2010年   37篇
  2009年   21篇
  2008年   43篇
  2007年   29篇
  2006年   31篇
  2005年   27篇
  2004年   28篇
  2003年   26篇
  2002年   16篇
  2001年   16篇
  2000年   10篇
  1999年   19篇
  1998年   7篇
  1996年   6篇
  1995年   8篇
  1994年   11篇
  1993年   6篇
  1992年   8篇
  1991年   12篇
  1990年   9篇
  1989年   11篇
  1988年   9篇
  1987年   9篇
  1986年   10篇
  1985年   9篇
  1984年   11篇
  1983年   8篇
  1982年   6篇
  1979年   4篇
  1978年   10篇
  1977年   6篇
  1975年   9篇
  1974年   10篇
  1973年   7篇
  1972年   5篇
  1969年   4篇
  1968年   5篇
  1965年   4篇
排序方式: 共有925条查询结果,搜索用时 781 毫秒
921.
Coal Tar‐Containing Asphalt Resource or Hazardous Waste?   总被引:1,自引:0,他引:1  
Abstract: Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.  相似文献   
922.
Ecosystems - Restoration of channelized streams by returning coarse sediment from stream edges to the wetted channel has become a common practice in Sweden. Yet, restoration activities do not...  相似文献   
923.
924.
Dopamine (DA) is rapidly oxidized by Mn3(+)-pyrophosphate to its cyclized o-quinone (cDAoQ), a reaction which can be prevented by NADH, reduced glutathione (GSH) or ascorbic acid. The oxidation of DA by Mn3+, which appears to be irreversible, results in a decrease in the level of DA, but not in a formation of reactive oxygen species, since oxygen is neither consumed nor required in this reaction. The formation of cDAoQ can initiate the generation of superoxide radicals (O2-.) by reduction-oxidation cycling, i.e. one-electron reduction of the quinone by various NADH- or NADPH-dependent flavoproteins to the semiquinone (QH.), which is readily reoxidized by O2 with the concomitant formation of O2-.. This mechanism is believed to underly the cytotoxicity of many quinones. Two-electron reduction of cDAoQ to the hydroquinone can be catalyzed by the flavoprotein DT diaphorase (NAD(P)H:quinone oxidoreductase). This enzyme efficiently maintains DA quinone in its fully reduced state, although some reoxidation of the hydroquinone (QH2) is observed (QH2 + O2----QH. + O2-. + H+; QH. + O2----Q + O2-.). In the presence of Mn3+, generated from Mn2+ by O2-. (Mn2+ + 2H+ + O2-.----Mn3+ + H2O2) formed during the autoxidation of DA hydroquinone, the rate of autoxidation is increased dramatically as is the formation of H2O2. Furthermore, cDAoQ is no longer fully reduced and the steady-state ratio between the hydroquinone and the quinone is dependent on the amount of DT diaphorase present. The generation of Mn3+ is inhibited by superoxide dismutase (SOD), which catalyzes the disproportionation of O2-. to H2O2 and O2. It is noteworthy that addition of SOD does not only result in a decrease in the amount of H2O2 formed during the regeneration of Mn3+, but, in fact, prevents H2O2 formation. Furthermore, in the presence of this enzyme the consumption of O2 is low, as is the oxidation of NADH, due to autoxidation of the hydroquinone, and the cyclized DA o-quinone is found to be fully reduced. These observations can be explained by the newly-discovered role of SOD as a superoxide:semiquinone (QH.) oxidoreductase catalyzing the following reaction: O2-. + QH. + 2H+----QH2 + O2. Thus, the combination of DT diaphorase and SOD is an efficient system for maintaining cDAoQ in its fully reduced state, a prerequisite for detoxication of the quinone by conjugation with sulfate or glucuronic acid. In addition, only minute amounts of reactive oxygen species will be formed, i.e. by the generation of O2-., which through disproportionation to H2O2 and further reduction by ferrous ions can be converted to the hydroxyl radical (OH.). Absence or low levels of these enzymes may create an oxidative stress on the cell and thereby initiate events leading to cell death.  相似文献   
925.
Highly purified, intact and functional mitochondria were isolated from roots and leaves of a number of fertile and male-sterile lines of sugar beet ( Beta vulgaris L.). Intact and functional mitochondria were successfully isolated from the flowers of fertile plants, but not from the flowers of male-sterile plants. Several alternative methods for the homogenization of male-sterile flowers were tried. Their failure suggests that the mitochondria from male-sterile flowers are more sensitive to mechanical damage than mitochondria from fertile, or other organs of male-sterile, plants.
In organello protein synthesis was optimized with respect to the total concentration of amino acids, the concentration of [35S]-methionine, pH and respiratory substrate. Inhibitor experiments showed that the mitochondrial preparations contained mitochondrial translational activity only. With the exception of one band, no processing or proteolytic breakdown in either root or leaf mitochondrial protein synthesis products could be detected in pulse-chase experiments. Submitochondrial fractionation experiments showed the presence of two soluble polypeptides, whereas all other polypeptides were membrane bound.
The polypeptide patterns of root, leaf and flower mitochondria were very similar with the exception of 4 polypeptides involved in glycine oxidation. These 4 polypeptides were present in large amounts in leaf mitochondria and just detectable in flower mitochondria. The patterns of polypeptides syntesized in mitochondria isolated from roots, leaves and flowers also showed a number of organ-specific differences. Six qualitative and 6 quantitative differences were found between mitochondria isolated from these three organs. No unique polypeptides were found to be synthesized either by flower mitochondria or by mitochondria from roots and leaves of male-sterile plants compared to their male-fertile counterparts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号