全文获取类型
收费全文 | 1368篇 |
免费 | 145篇 |
国内免费 | 1篇 |
专业分类
1514篇 |
出版年
2021年 | 14篇 |
2020年 | 9篇 |
2019年 | 11篇 |
2018年 | 15篇 |
2017年 | 16篇 |
2016年 | 29篇 |
2015年 | 34篇 |
2014年 | 43篇 |
2013年 | 65篇 |
2012年 | 79篇 |
2011年 | 84篇 |
2010年 | 46篇 |
2009年 | 50篇 |
2008年 | 59篇 |
2007年 | 63篇 |
2006年 | 61篇 |
2005年 | 46篇 |
2004年 | 44篇 |
2003年 | 42篇 |
2002年 | 45篇 |
2001年 | 51篇 |
2000年 | 56篇 |
1999年 | 37篇 |
1998年 | 25篇 |
1997年 | 20篇 |
1996年 | 13篇 |
1995年 | 11篇 |
1994年 | 16篇 |
1993年 | 15篇 |
1992年 | 22篇 |
1991年 | 29篇 |
1990年 | 32篇 |
1989年 | 25篇 |
1988年 | 20篇 |
1987年 | 22篇 |
1986年 | 26篇 |
1985年 | 15篇 |
1984年 | 19篇 |
1983年 | 13篇 |
1982年 | 18篇 |
1981年 | 7篇 |
1980年 | 14篇 |
1979年 | 17篇 |
1978年 | 15篇 |
1977年 | 12篇 |
1976年 | 11篇 |
1975年 | 15篇 |
1974年 | 10篇 |
1973年 | 9篇 |
1972年 | 9篇 |
排序方式: 共有1514条查询结果,搜索用时 15 毫秒
61.
Yubin Zhou Wen-Pin Tzeng Hing-Cheung Wong Yiming Ye Jie Jiang Yanyi Chen Yun Huang Suganthi Suppiah Teryl K. Frey Jenny J. Yang 《The Journal of biological chemistry》2010,285(12):8855-8868
The rubella virus (RUBV) nonstructural (NS) protease domain, a Ca2+- and Zn2+-binding papain-like cysteine protease domain within the nonstructural replicase polyprotein precursor, is responsible for the self-cleavage of the precursor into two mature products, P150 and P90, that compose the replication complex that mediates viral RNA replication; the NS protease resides at the C terminus of P150. Here we report the Ca2+-dependent, stoichiometric association of calmodulin (CaM) with the RUBV NS protease. Co-immunoprecipitation and pulldown assays coupled with site-directed mutagenesis demonstrated that both the P150 protein and a 110-residue minidomain within NS protease interacted directly with Ca2+/CaM. The specific interaction was mapped to a putative CaM-binding domain. A 32-mer peptide (residues 1152–1183, denoted as RUBpep) containing the putative CaM-binding domain was used to investigate the association of RUBV NS protease with CaM or its N- and C-terminal subdomains. We found that RUBpep bound to Ca2+/CaM with a dissociation constant of 100–300 nm. The C-terminal subdomain of CaM preferentially bound to RUBpep with an affinity 12.5-fold stronger than the N-terminal subdomain. Fluorescence, circular dichroism and NMR spectroscopic studies revealed a “wrapping around” mode of interaction between RUBpep and Ca2+/CaM with substantially more helical structure in RUBpep and a global structural change in CaM upon complex formation. Using a site-directed mutagenesis approach, we further demonstrated that association of CaM with the CaM-binding domain in the RUBV NS protease was necessary for NS protease activity and infectivity. 相似文献
62.
McCoy JG Arabshahi A Bitto E Bingman CA Ruzicka FJ Frey PA Phillips GN 《Biochemistry》2006,45(10):3154-3162
The X-ray crystal structure of the At5g18200.1 protein has been determined to a nominal resolution of 2.30 A. The structure has a histidine triad (HIT)-like fold containing two distinct HIT-like motifs. The sequence of At5g18200.1 indicates a distant family relationship to the Escherichia coli galactose-1-P uridylyltransferase (GalT): the determined structure of the At5g18200.1 protein confirms this relationship. The At5g18200.1 protein does not demonstrate GalT activity but instead catalyzes adenylyl transfer in the reaction of ADP-glucose with various phosphates. The best acceptor among those evaluated is phosphate itself; thus, the At5g18200.1 enzyme appears to be an ADP-glucose phosphorylase. The enzyme catalyzes the exchange of (14)C between ADP-[(14)C]glucose and glucose-1-P in the absence of phosphate. The steady state kinetics of exchange follows the ping-pong bi-bi kinetic mechanism, with a k(cat) of 4.1 s(-)(1) and K(m) values of 1.4 and 83 microM for ADP-[(14)C]glucose and glucose-1-P, respectively, at pH 8.5 and 25 degrees C. The overall reaction of ADP-glucose with phosphate to produce ADP and glucose-1-P follows ping-pong bi-bi steady state kinetics, with a k(cat) of 2.7 s(-)(1) and K(m) values of 6.9 and 90 microM for ADP-glucose and phosphate, respectively, at pH 8.5 and 25 degrees C. The kinetics are consistent with a double-displacement mechanism that involves a covalent adenylyl-enzyme intermediate. The X-ray crystal structure of this intermediate was determined to 1.83 A resolution and shows the AMP group bonded to His(186). The value of K(eq) in the direction of ADP and glucose-1-P formation is 5.0 at pH 7.0 and 25 degrees C in the absence of a divalent metal ion, and it is 40 in the presence of 1 mM MgCl(2). 相似文献
63.
Frey M. J.; Lanoce V.; Molinoff P. B.; Wilson J. R. 《Journal of applied physiology》1989,67(5):2026-2031
To investigate whether heart failure alters beta-adrenergic receptors on skeletal muscle and its associated vasculature, the density of beta-adrenergic receptors, isoproterenol-stimulated adenylate cyclase activity, and coupling of the guanine nucleotide-binding regulatory protein were compared in 18 control dogs and 16 dogs with heart failure induced by 5-8 wk of ventricular pacing at 260 beats/min. Hindlimb vascular responses to isoproterenol were compared in eight controls and eight of the dogs with heart failure. In dogs with heart failure, the density of beta-receptors on skeletal muscle was reduced in both gastrocnemius (control: 50 +/- 5; heart failure: 33 +/- 8 fmol/mg of protein) and semitendinosus muscle (control: 43 +/- 9; heart failure: 27 +/- 9 fmol/mg of protein, both P less than 0.05). Receptor coupling to the ternary complex, as determined by isoproterenol competition curves with and without guanosine 5'-triphosphate (GTP), was unchanged. Isoproterenol-stimulated adenylate cyclase activity was significantly decreased in semitendinosus muscle (control: 52.4 +/- 4.6; heart failure: 36.5 +/- 9.5 pmol.mg-1.min-1; P less than 0.05) and tended to be decreased in gastrocnemius muscle (control: 40.1 +/- 8.5; heart failure: 33.5 +/- 4.5 pmol.mg-1.min-1; P = NS). Isoproterenol-induced hindlimb vasodilation was not significantly different in controls and in dogs with heart failure. These findings suggest that heart failure causes downregulation of skeletal muscle beta-adrenergic receptors, probably due to receptor exposure to elevated catecholamine levels, but does not reduce beta-receptor-mediated vasodilation in muscle. 相似文献
64.
Paternally Expressed Gene 3 (Peg3) is an imprinted gene that controls milk letdown and maternal-caring behaviors. In this study, a conditional knockout allele has been developed in Mus musculus to further characterize these known functions of Peg3 in a tissue-specific manner. The mutant line was first crossed with a germline Cre. The progeny of this cross displayed growth retardation phenotypes. This is consistent with those seen in the previous mutant lines of Peg3, confirming the usefulness of the new mutant allele. The mutant line was subsequently crossed individually with MMTV- and Nkx2.1-Cre lines to test Peg3’s roles in the mammary gland and hypothalamus, respectively. According to the results, the milk letdown process was impaired in the nursing females with the Peg3 mutation in the mammary gland, but not in the hypothalamus. This suggests that Peg3’s roles in the milk letdown process are more critical in the mammary gland than in the hypothalamus. In contrast, one of the maternal-caring behaviors, nest-building, was interrupted in the females with the mutation in both MMTV- and Nkx2.1-driven lines. Overall, this is the first study to introduce a conditional knockout allele of Peg3 and to further dissect its contribution to mammalian reproduction in a tissue-specific manner. 相似文献
65.
Lysine 2,3-aminomutase from Clostridium SB4 has been studied by electron paramagnetic resonance (EPR) spectroscopy at 77 K. Although the reaction catalyzed by this enzyme is similar to rearrangements catalyzed by enzymes requiring adenosylcobalamin, lysine 2,3-aminomutase does not utilize this cofactor. The enzyme instead contains iron-sulfur clusters, cobalt, and pyridoxal phosphate and is activated by S-adenosylmethionine. Subsequent to a reductive incubation procedure that is required to activate the enzyme, EPR studies reveal the appearance of an organic radical signal (g = 2.001) upon addition of both L-lysine and S-adenosylmethionine. The radical signal is complex, having multiple hyperfine transitions. The total radical concentration is proportional to enzyme activity and decreases in parallel with the approach to chemical equilibrium between alpha-lysine and beta-lysine. The signal changes over the time course of the reaction in a way that suggests the presence of more than one radical species, with different relative proportions of species in the steady state and equilibrium state. Isotopic substitution experiments show that unpaired spin density resides on the molecular framework of lysine and that solvent-exchangeable protons do not participate in strong hyperfine coupling to the radical. The results indicate that lysine radicals participate in the rearrangement mechanism. 相似文献
66.
Deletion of Smgpi1 encoding a GPI‐anchored protein suppresses sterility of the STRIPAK mutant ΔSmmob3 in the filamentous ascomycete Sordaria macrospora 下载免费PDF全文
Stefan Frey Yasmine Lahmann Thomas Hartmann Stephan Seiler Stefanie Pöggeler 《Molecular microbiology》2015,97(4):676-697
The str iatin i nteracting p hosphatase a nd k inase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting‐body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the g lycosylp hosphatidyli nositol (GPI)‐anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two‐hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co‐immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual‐targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ΔSmmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal‐fusion defects. The suppression effect was specific for the ΔSmmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility. 相似文献
67.
N. Helge Meyer Hubert Mayerhofer Konstantinos Tripsianes Silke Blindow Daniela Barths Astrid Mewes Thomas Weimar Thies K?hli Steffen Bade Tobias Madl Andreas Frey Helmut Haas Jochen Mueller-Dieckmann Michael Sattler Gabriele Schramm 《The Journal of biological chemistry》2015,290(36):22111-22126
The IL-4-inducing principle from Schistosoma mansoni eggs (IPSE/α-1), the major secretory product of eggs from the parasitic worm S. mansoni, efficiently triggers basophils to release the immunomodulatory key cytokine interleukin-4. Activation by IPSE/α-1 requires the presence of IgE on the basophils, but the detailed molecular mechanism underlying activation is unknown. NMR and crystallographic analysis of IPSEΔNLS, a monomeric IPSE/α-1 mutant, revealed that IPSE/α-1 is a new member of the βγ-crystallin superfamily. We demonstrate that this molecule is a general immunoglobulin-binding factor with highest affinity for IgE. NMR binding studies of IPSEΔNLS with the 180-kDa molecule IgE identified a large positively charged binding surface that includes a flexible loop, which is unique to the IPSE/α-1 crystallin fold. Mutational analysis of amino acids in the binding interface showed that residues contributing to IgE binding are important for IgE-dependent activation of basophils. As IPSE/α-1 is unable to cross-link IgE, we propose that this molecule, by taking advantage of its unique IgE-binding crystallin fold, activates basophils by a novel, cross-linking-independent mechanism. 相似文献
68.
Stoichiometry of soil enzyme activity at global scale 总被引:27,自引:0,他引:27
Sinsabaugh RL Lauber CL Weintraub MN Ahmed B Allison SD Crenshaw C Contosta AR Cusack D Frey S Gallo ME Gartner TB Hobbie SE Holland K Keeler BL Powers JS Stursova M Takacs-Vesbach C Waldrop MP Wallenstein MD Zak DR Zeglin LH 《Ecology letters》2008,11(11):1252-1264
Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-N-acetylglucosaminidase and phosphatase g(-1) soil increased with organic matter concentration; leucine aminopeptidase, phenol oxidase and peroxidase activities showed no relationship. All activities were significantly related to soil pH. Specific activities, i.e. activity g(-1) soil organic matter, also varied in relation to soil pH for all enzymes. Relationships with mean annual temperature (MAT) and precipitation (MAP) were generally weak. For hydrolases, ratios of specific C, N and P acquisition activities converged on 1 : 1 : 1 but across ecosystems, the ratio of C : P acquisition was inversely related to MAP and MAT while the ratio of C : N acquisition increased with MAP. Oxidative activities were more variable than hydrolytic activities and increased with soil pH. Our analyses indicate that the enzymatic potential for hydrolyzing the labile components of soil organic matter is tied to substrate availability, soil pH and the stoichiometry of microbial nutrient demand. The enzymatic potential for oxidizing the recalcitrant fractions of soil organic material, which is a proximate control on soil organic matter accumulation, is most strongly related to soil pH. These trends provide insight into the biogeochemical processes that create global patterns in ecological stoichiometry and organic matter storage. 相似文献
69.
70.
Non-selective effects, like genetic drift, are an important factor in modern conceptions of evolution, and have been extensively studied for constant population sizes (Kimura, 1955; Otto and Whitlock, 1997). Here, we consider non-selective evolution in the case of growing populations that are of small size and have varying trait compositions (e.g. after a population bottleneck). We find that, in these conditions, populations never fixate to a trait, but tend to a random limit composition, and that the distribution of compositions “freezes” to a steady state. This final state is crucially influenced by the initial conditions. We obtain these findings from a combined theoretical and experimental approach, using multiple mixed subpopulations of two Pseudomonas putida strains in non-selective growth conditions (Matthijs et al, 2009) as model system. The experimental results for the population dynamics match the theoretical predictions based on the Pólya urn model (Eggenberger and Pólya, 1923) for all analyzed parameter regimes. In summary, we show that exponential growth stops genetic drift. This result contrasts with previous theoretical analyses of non-selective evolution (e.g. genetic drift), which investigated how traits spread and eventually take over populations (fixate) (Kimura, 1955; Otto and Whitlock, 1997). Moreover, our work highlights how deeply growth influences non-selective evolution, and how it plays a key role in maintaining genetic variability. Consequently, it is of particular importance in life-cycles models (Melbinger et al, 2010; Cremer et al, 2011; Cremer et al, 2012) of periodically shrinking and expanding populations. 相似文献