首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1309篇
  免费   142篇
  国内免费   1篇
  2021年   14篇
  2020年   9篇
  2019年   11篇
  2018年   15篇
  2017年   16篇
  2016年   27篇
  2015年   33篇
  2014年   39篇
  2013年   63篇
  2012年   76篇
  2011年   76篇
  2010年   35篇
  2009年   44篇
  2008年   51篇
  2007年   60篇
  2006年   60篇
  2005年   46篇
  2004年   44篇
  2003年   42篇
  2002年   44篇
  2001年   51篇
  2000年   56篇
  1999年   36篇
  1998年   22篇
  1997年   20篇
  1996年   13篇
  1995年   11篇
  1994年   16篇
  1993年   15篇
  1992年   22篇
  1991年   29篇
  1990年   31篇
  1989年   25篇
  1988年   20篇
  1987年   22篇
  1986年   26篇
  1985年   15篇
  1984年   19篇
  1983年   12篇
  1982年   18篇
  1981年   7篇
  1980年   14篇
  1979年   17篇
  1978年   15篇
  1977年   11篇
  1976年   10篇
  1975年   15篇
  1974年   10篇
  1973年   9篇
  1972年   9篇
排序方式: 共有1452条查询结果,搜索用时 125 毫秒
71.
The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.  相似文献   
72.
Huntington disease (HD) is caused by an expanded polyglutamine (poly(Q)) repeat near the N terminus of the huntingtin (htt) protein. Expanded poly(Q) facilitates formation of htt aggregates, eventually leading to deposition of cytoplasmic and intranuclear inclusion bodies containing htt. Flanking sequences directly adjacent to the poly(Q) domain, such as the first 17 amino acids on the N terminus (Nt17) and the polyproline (poly(P)) domain on the C-terminal side of the poly(Q) domain, heavily influence aggregation. Additionally, htt interacts with a variety of membraneous structures within the cell, and Nt17 is implicated in lipid binding. To investigate the interaction between htt exon1 and lipid membranes, a combination of in situ atomic force microscopy, Langmuir trough techniques, and vesicle permeability assays were used to directly monitor the interaction of a variety of synthetic poly(Q) peptides with different combinations of flanking sequences (KK-Q35-KK, KK-Q35-P10-KK, Nt17-Q35-KK, and Nt17-Q35-P10-KK) on model membranes and surfaces. Each peptide aggregated on mica, predominately forming extended, fibrillar aggregates. In contrast, poly(Q) peptides that lacked the Nt17 domain did not appreciably aggregate on or insert into lipid membranes. Nt17 facilitated the interaction of peptides with lipid surfaces, whereas the poly(P) region enhanced this interaction. The aggregation of Nt17-Q35-P10-KK on the lipid bilayer closely resembled that of a htt exon1 construct containing 35 repeat glutamines. Collectively, this data suggests that the Nt17 domain plays a critical role in htt binding and aggregation on lipid membranes, and this lipid/htt interaction can be further modulated by the presence of the poly(P) domain.  相似文献   
73.
Soil warming studies have generally demonstrated an ephemeral response of soil respiration to warming suggesting acclimatization to increased temperatures. Many of these studies depict acclimatization as an empirical temperature-respiration model with data collected from late spring through early autumn. We examined the apparent temperature sensitivity of soil respiration in chronically warmed soils over three different timescales: annually, during the growing season, and seasonally during winter, spring, summer, and fall. Temperature sensitivity was evaluated by fitting exponential and flexible temperature functions as mixed effects models. From model coefficients, we estimated annual, growing season, and season-specific Q 10 values, and assessed the ability of model coefficients to predict daily soil respiration rates over a two-year period. We found that respiration in warmed soils can exhibit characteristics of acclimatized temperature sensitivity depending on the timeframe and the function (exponential or flexible) used. Models using growing season data suggested acclimatization while models using data collected in winter or spring indicated enhanced temperature sensitivity with 5 °C of warming. Differences in temperature sensitivity affected predicted daily soil respiration rates, particularly in winter and spring. Models constructed over longer timescales overestimated daily respiration rates by as much 10–40 % whereas season-specific predictions were generally within 2 % of actual values. Failure to use season-specific models to depict changes in temperature dependence may over- or under-estimate carbon losses due to climate warming, especially during the colder months of the year.  相似文献   
74.
Psoriasis vulgaris is a complex chronic skin disease with immunological and genetic background. The most important predisposing genetic factors in psoriasis are genes of the human leukocyte antigen (HLA) region. Accumulative evidence has shown that several HLA alleles are closely associated with psoriasis; however, they tend to vary in different racial and ethnic backgrounds. One hundred forty-seven unrelated Slovak patients with psoriasis vulgaris (average age at onset 28?±?14 years) were genotyped for the HLA-C, DQB1 and DRB1 alleles by the polymerase chain reaction using sequence-specific primers. Allele frequencies observed in the group of psoriatic patients were compared to those obtained in the ethnically matched control group comprising 194 subjects with no history of psoriasis. Susceptibility to psoriasis vulgaris in our study group is significantly associated with HLA-C*06 (odds ratio (OR)?=?3.85), DRB1*07 (OR?=?2.56) and DQB1*02 (OR?=?1.09), respectively, whereas DRB*01 (OR?=?0.05) is associated negatively. Hereby, we provide the first report on the association of HLA-C, DRB1 and DQB1 alleles with psoriasis in the Slovak population. Our findings confirm HLA-C*06 and DRB1*07 as the most important genetic risk factors for psoriasis. However, the role of HLA genes as causative in the pathogenesis of the disease remains unclear. Identification of genetic factors that increase the risk of psoriasis is a precondition that helps to elucidate the pathogenesis of this troubling disease and identify targets for a more specific and effective therapy.  相似文献   
75.
The trunk-like nose of the saiga antelope Saiga tatarica is a striking example of an exaggerated trait, assumed to having evolved as a dust filter for inhaled air. In addition, it functions to elongate the vocal tract in harem saiga males for producing low-formant calls that serve as a cue to body size for conspecifics. This study applies the source–filter theory to the acoustics of nasal, oral and nasal-and-oral calls that were recorded from a captive herd of 24 mother and 32 neonate saigas within the first 10 days postpartum. Anatomical measurements of the nasal and oral vocal tracts of two specimens (one per age class) helped to establish the settings for the analysis of formants. In both mother and young, the lower formants of nasal calls/call parts were in agreement with the source–filter theory, which suggests lower formants for the longer nasal vocal tract than for the shorter oral vocal tract. Similar fundamental frequencies of the nasal and oral parts of nasal-and-oral calls were also in agreement with the source–filter theory, which postulates the independence of source and filter. However, the fundamental frequency was higher in oral than in nasal calls, probably due to the higher emotional arousal during the production of oral calls. We discuss production mechanisms and the ontogeny of formant patterns of oral and nasal calls among bovid and cervid species with and without a trunk-like nose.  相似文献   
76.
A proteomics survey of human placental syncytiotrophoblast (ST) apical plasma membranes revealed peptides corresponding to flotillin-1 (FLOT1) and flotillin-2 (FLOT2). The flotillins belong to a class of lipid microdomain-associated integral membrane proteins that have been implicated in clathrin- and caveolar-independent endocytosis. In the present study, we characterized the expression of the flotillin proteins within the human placenta. FLOT1 and FLOT2 were coexpressed in placental lysates and BeWo human trophoblast cells. Immunofluorescence microscopy of first-trimester and term placentas revealed that both proteins were more prominent in villous endothelial cells and cytotrophoblasts (CTs) than the ST. Correspondingly, forskolin-induced fusion in BeWo cells resulted in a decrease in FLOT1 and FLOT2, suggesting that flotillin protein expression is reduced following trophoblast syncytialization. The flotillin proteins co-localized with a marker of fluid-phase pinocytosis, and knockdown of FLOT1 and/or FLOT2 expression resulted in decreased endocytosis of cholera toxin B subunit. We conclude that FLOT1 and FLOT2 are abundantly coexpressed in term villous placental CTs and endothelial cells, and in comparison, expression of these proteins in the ST is reduced. These findings suggest that flotillin-dependent endocytosis is unlikely to be a major pathway in the ST, but may be important in the CT and endothelium.  相似文献   
77.
78.
Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent “first hit”, rendering IUGR intestine susceptible to further injury, infection, or inflammation.  相似文献   
79.
Prior to 2008 and the discovery of several important hawksbill turtle (Eretmochelys imbricata) nesting colonies in the EP (Eastern Pacific), the species was considered virtually absent from the region. Research since that time has yielded new insights into EP hawksbills, salient among them being the use of mangrove estuaries for nesting. These recent revelations have raised interest in the genetic characterization of hawksbills in the EP, studies of which have remained lacking to date. Between 2008 and 2014, we collected tissue samples from 269 nesting hawksbills at nine rookeries across the EP and used mitochondrial DNA sequences (766 bp) to generate the first genetic characterization of rookeries in the region. Our results inform genetic diversity, population differentiation, and phylogeography of the species. Hawksbills in the EP demonstrate low genetic diversity: We identified a total of only seven haplotypes across the region, including five new and two previously identified nesting haplotypes (pooled frequencies of 58.4% and 41.6%, respectively), the former only evident in Central American rookeries. Despite low genetic diversity, we found strong stock structure between the four principal rookeries, suggesting the existence of multiple populations and warranting their recognition as distinct management units. Furthermore, haplotypes EiIP106 and EiIP108 are unique to hawksbills that nest in mangrove estuaries, a behavior found only in hawksbills along Pacific Central America. The detected genetic differentiation supports the existence of a novel mangrove estuary “reproductive ecotype” that may warrant additional conservation attention. From a phylogeographic perspective, our research indicates hawksbills colonized the EP via the Indo‐Pacific, and do not represent relict populations isolated from the Atlantic by the rising of the Panama Isthmus. Low overall genetic diversity in the EP is likely the combined result of few rookeries, extremely small reproductive populations and evolutionarily recent colonization events. Additional research with larger sample sizes and variable markers will help further genetic understanding of hawksbill turtles in the EP.  相似文献   
80.
The genetic consequences of range expansions have generally been investigated at wide geographical and temporal scales, long after the colonization event. A unique ecological system enabled us to both monitor the colonization dynamics and decipher the genetic footprints of expansion over a very short time period. Each year an epidemic of the poplar rust (Melampsora larici‐populina) expands clonally and linearly along the Durance River, in the Alps. The colonization dynamics observed in 2004 showed two phases with different genetic outcomes. Upstream, fast colonization maintained high genetic diversity. Downstream, the colonization wave progressively faltered, diversity eroded, and differentiation increased, as expected under recurrent founder events. In line with the high dispersal abilities of rust pathogens, we provide evidence for leapfrog dispersal of clones. Our results thus emphasize the importance of colonization dynamics in shaping spatial genetic structure in the face of high gene flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号