首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   14篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   14篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2000年   4篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1984年   1篇
  1978年   2篇
排序方式: 共有89条查询结果,搜索用时 234 毫秒
21.
In utero immune deprivation of the neurotrophic molecule nerve growth factor (NGF) results in the death of most, but not all, mammalian dorsal root ganglion (DRG) neurons. The recent identification of trk, trkB, and trkC as the putative high affinity receptors for NGF, brain-derived neurotrophic factor, and neurotrophin-3, respectively, has allowed an examination of whether their expression by DRG neurons correlates with differential sensitivity to immune deprivation of NGF. In situ hybridization demonstrates that virtually all neurons expressing trk are lost during in utero NGF deprivation. Most, if not all, neurons expressing trkB and trkC survive this treatment. In contrast, the low affinity NGF receptor, p75NGFR, is expressed in both NGF deprivation-resistant and -sensitive neurons. These experiments show that DRG neurons expressing trk require NGF for survival. Furthermore, at least some of the DRG neurons that do not require NGF express the high affinity receptor for another neurotrophin. Finally, these experiments provide evidence that trk, and not p75NGFR, is the primary effector of NGF action in vivo.  相似文献   
22.
BACKGROUND: Heparin has been shown to reduce intimal thickening after arterial wall injury by inhibiting vascular smooth muscle cell proliferation and migration. The authors studied the acute and long-term results after local delivery of heparin after balloon angioplasty for in-stent restenosis. METHODS AND RESULTS: Forty-seven in-stent restenosis cases, 32 of them longer than 1 cm, were enrolled. After angioplasty local heparin delivery was performed using the Dispatch coronary infusion catheter (Scimed Life Systems/Boston Scientific Corp, Natick, MA, USA); the infusion rate was 99.9 ml per hour and a target dosage of 4000 iu heparin per site was intended to be delivered. In nine cases (19.15%) heparin delivery had to be stopped because of ischemia. One patient died six days after intervention. After a follow-up interval of 6-12 months target vessel revascularization rate was 28.26%. CONCLUSIONS: For the protocol used ischemia occurred more often than previously reported. Considering the fact that most patients had diffuse in-stent restenosis, the target revascularization rate at follow-up was acceptable.  相似文献   
23.
Multiple sulfatase deficiency (MSD), mucolipidosis (ML) II/III and Niemann–Pick type C1 (NPC1) disease are rare but fatal lysosomal storage disorders caused by the genetic defect of non-lysosomal proteins. The NPC1 protein mainly localizes to late endosomes and is essential for cholesterol redistribution from endocytosed LDL to cellular membranes. NPC1 deficiency leads to lysosomal accumulation of a broad range of lipids. The precise functional mechanism of this membrane protein, however, remains puzzling. ML II, also termed I cell disease, and the less severe ML III result from deficiencies of the Golgi enzyme N-acetylglucosamine 1-phosphotransferase leading to a global defect of lysosome biogenesis. In patient cells, newly synthesized lysosomal proteins are not equipped with the critical lysosomal trafficking marker mannose 6-phosphate, thus escaping from lysosomal sorting at the trans Golgi network. MSD affects the entire sulfatase family, at least seven members of which are lysosomal enzymes that are specifically involved in the degradation of sulfated glycosaminoglycans, sulfolipids or other sulfated molecules. The combined deficiencies of all sulfatases result from a defective post-translational modification by the ER-localized formylglycine-generating enzyme (FGE), which oxidizes a specific cysteine residue to formylglycine, the catalytic residue enabling a unique mechanism of sulfate ester hydrolysis. This review gives an update on the molecular bases of these enigmatic diseases, which have been challenging researchers since many decades and so far led to a number of surprising findings that give deeper insight into both the cell biology and the pathobiochemistry underlying these complex disorders. In case of MSD, considerable progress has been made in recent years towards an understanding of disease-causing FGE mutations. First approaches to link molecular parameters with clinical manifestation have been described and even therapeutical options have been addressed. Further, the discovery of FGE as an essential sulfatase activating enzyme has considerable impact on enzyme replacement or gene therapy of lysosomal storage disorders caused by single sulfatase deficiencies.  相似文献   
24.
Lactobacillus reuteri strain 100-23 together with a Lactobacillus-free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase (ftf) gene resulted in loss of exopolysaccharide production. The ftf mutant was able to colonise the murine gastrointestinal tract in the absence of competition, but colonisation was impaired in competition with the wild type. Biofilm formation by the mutant on the forestomach epithelial surface was not impaired and the matrix between cells was indistinguishable from that of the wild type in electron micrographs. Colonisation of the mouse gut by the wild-type strain led to increased proportions of regulatory T cells (Foxp3+) in the spleen, whereas colonisation by the ftf mutant did not. Survival of the mutant in sucrose-containing medium was markedly reduced relative to the wild type. Comparison of the genomic ftf loci of strain 100-23 with other L. reuteri strains suggested that the ftf gene was acquired by lateral gene transfer early in the evolution of the species and subsequently diversified at accelerated rates. Levan production by L. reuteri 100-23 may represent a function acquired by the bacterial species for life in moderate to high-sucrose extra-gastrointestinal environments that has subsequently been diverted to novel uses, including immunomodulation, that aid in colonisation of the murine gut.  相似文献   
25.
RpkA (Receptor phosphatidylinositol kinase A) is an unusual seven-helix transmembrane protein of Dictyostelium discoideum with a G protein coupled receptor (GPCR) signature and a C-terminal lipid kinase domain (GPCR-PIPK) predicted as a phosphatidylinositol-4-phosphate 5-kinase. RpkA-homologs are present in all so far sequenced Dictyostelidae as well as in several other lower eukaryotes like the oomycete Phytophthora, and in the Legionella host Acanthamoeba castellani. Here we show by immunofluorescence that RpkA localizes to endosomal membranes and is specifically recruited to phagosomes. RpkA interacts with the phagosomal protein complex V-ATPase as proteins of this complex co-precipitate with RpkA-GFP as well as with the GST-tagged PIPK domain of RpkA. Loss of RpkA leads to a defect in phagocytosis as measured by yeast particle uptake. The uptake of the pathogenic bacterium Legionella pneumophila was however unaltered whereas its intra-cellular replication was significantly enhanced in rpkA(-). The difference between wild type and rpkA(-) was even more prominent when L. hackeliae was used. When we investigated the reason for the enhanced susceptibility for L. pneumophila of rpkA(-) we could not detect a difference in endosomal pH but rpkA(-) showed depletion of phosphoinositides (PIP and PIP(2)) when we compared metabolically labeled phosphoinositides from wild type and rpkA(-). Furthermore rpkA(-) exhibited reduced nitrogen starvation tolerance, an indicator for a reduced autophagy rate. Our results indicate that RpkA is a component of the defense system of D. discoideum as well as other lower eukaryotes.  相似文献   
26.
A functional proteomic analysis of the intracytoplasmic membrane (ICM) development process was performed in Rhodobacter sphaeroides during adaptation from high-intensity illumination to indirect diffuse light. This initiated an accelerated synthesis of the peripheral light-harvesting 2 (LH2) complex relative to that of LH1-reaction center (RC) core particles. After 11 days, ICM vesicles (chromatophores) and membrane invagination sites were isolated by rate-zone sedimentation and subjected to clear native gel electrophoresis. Proteomic analysis of gel bands containing the RC-LH1 and -LH2 complexes from digitonin-solubilized chromatophores revealed high levels of comigrating electron transfer enzymes, transport proteins, and membrane assembly factors relative to their equivalent gel bands from cells undergoing adaptation to direct low-level illumination. The GroEL chaperonin accounted for >65% of the spectral counts in the RC-LH1 band from membrane invagination sites, which together with the appearance of a universal stress protein suggested that the viability of these cells was challenged by light limitation. Functional aspects of the photosynthetic unit assembly process were monitored by near-IR fast repetition rate analysis of variable fluorescence arising from LH-bacteriochlorophyll a components. The quantum yield of the primary charge separation during the early stages of adaptation showed a gradual increase (variable/maximal fluorescence = 0.78-0.83 between 0 and 4 h), while the initial value of ~70 for the functional absorption cross section (σ) gradually increased to 130 over 4 days. These dramatic σ increases showed a direct relation to gradual slowing of the RC electron transport turnover rate (τ(QA)) from ~1.6 to 6.4 ms and an ~3-fold slowing of the rate of reoxidation of the ubiquinone pool. These slowed rates are not due to changes in UQ pool size, suggesting that the relation between increasing σ and τ(QA) reflects the imposition of constraints upon free diffusion of ubiquinone redox species between the RC and cytochrome bc(1) complex as the membrane bilayer becomes densely packed with LH2 rings.  相似文献   
27.
Human pancreatic ductal adenocarcinoma (PDAC) is characterized by early systemic dissemination. Although RhoC has been implicated in cancer cell migration, the relevant underlying molecular mechanisms remain unknown. RhoC has been implicated in the enhancement of cancer cell migration and invasion, with actions which are distinct from RhoA (84% homology), and are possibly attributed to the divergent C-terminus domain. Here, we confirm that RhoC significantly enhances the migratory and invasive properties of pancreatic carcinoma cells. In addition, we show that RhoC over-expression decreases cancer cell adhesion and, in turn, accelerates cellular body movement and focal adhesion turnover, especially, on fibronectin-coated surfaces. Whilst RhoC over-expression did not alter integrin expression patterns, we show that it enhanced integrin α5β1 internalization and re-cycling (trafficking), an effect that was dependent specifically on the C-terminus (180-193 amino acids) of RhoC protein. We also report that RhoC and integrin α5β1 co-localize within the peri-nuclear region of pancreatic tumor cells, and by masking the CAAX motif at the C-terminal of RhoC protein, we were able to abolish this interaction in vitro and in vivo. Co-localization of integrin α5β1 and RhoC was demonstrable in invading cancer cells in 3D-organotypic cultures, and further mimicked in vivo analyses of, spontaneous human, (two distinct sources: operated patients and rapid autopsy programme) and transgenic murine (LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre), pancreatic cancers. In both cases, co-localization of integrin α5β1 and RhoC correlated with poor differentiation status and metastatic potential. We propose that RhoC facilitates tumor cell invasion and promotes subsequent metastasis, in part, by enhancing integrin α5β1 trafficking. Thus, RhoC may serve as a biomarker and a therapeutic target.  相似文献   
28.
Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.  相似文献   
29.
Photosynthesis in purple bacteria is performed by pigment–protein complexes that are closely packed within specialized intracytoplasmic membranes. Here we report on the influence of carotenoid composition on the organization of RC–LH1 pigment–protein complexes in intact membranes and cells of Rhodobacter sphaeroides. Mostly dimeric RC–LH1 complexes could be isolated from strains expressing native brown carotenoids when grown under illuminated/anaerobic conditions, or from strains expressing green carotenoids when grown under either illuminated/anaerobic or dark/semiaerobic conditions. However, mostly monomeric RC–LH1 complexes were isolated from strains expressing the native photoprotective red carotenoid spheroidenone, which is synthesized during phototrophic growth in the presence of oxygen. Despite this marked difference, linear dichroism (LD) and light-minus-dark LD spectra of oriented intact intracytoplasmic membranes indicated that RC–LH1 complexes are always assembled in ordered arrays, irrespective of variations in the relative amounts of isolated dimeric and monomeric RC–LH1 complexes. We propose that part of the photoprotective response to the presence of oxygen mediated by synthesis of spheroidenone may be a switch of the structure of the RC–LH1 complex from dimers to monomers, but that these monomers are still organized into the photosynthetic membrane in ordered arrays. When levels of the dimeric RC–LH1 complex were very high, and in the absence of LH2, LD and ?LD spectra from intact cells indicated an ordered arrangement of RC–LH1 complexes. Such a degree of ordering implies the presence of highly elongated, tubular membranes with dimensions requiring orientation along the length of the cell and in a proportion larger than previously observed.  相似文献   
30.
In purple bacteria of the genus Rhodobacter (Rba.), an LH1 antenna complex surrounds the photochemical reaction centre (RC) with a PufX protein preventing the LH1 complex from completely encircling the RC. In membranes of Rba. sphaeroides, RC–LH1 complexes associate as dimers which in turn assemble into longer range ordered arrays. The present work uses linear dichroism (LD) and dark-minus-light difference LD (ΔLD) to probe the organisation of genetically altered RC–LH1 complexes in intact membranes. The data support previous proposals that Rba. capsulatus, and Rba. sphaeroides heterologously expressing the PufX protein from Rba. capsulatus, produce monomeric core complexes in membranes that lack long-range order. Similarly, Rba. sphaeroides with a point mutation in the Gly 51 residue of PufX, which is located on the membrane-periplasm interface, assembles mainly non-ordered RC–LH1 complexes that are most likely monomeric. All the Rba. sphaeroides membranes in their ΔLD spectra exhibited a spectral fingerprint of small degree of organisation implying the possibility of ordering influence of LH1, and leading to an important conclusion that PufX itself has no influence on ordering RC–LH1 complexes, as long-range order appears to be induced only through its role of configuring RC–LH1 complexes into dimers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号