首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  36篇
  2024年   1篇
  2016年   4篇
  2011年   1篇
  2008年   1篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有36条查询结果,搜索用时 36 毫秒
21.
The mammalian pharynx is a hollow muscular tube that participates in ingestion and respiration, and its size, shape, and stiffness can be altered by contraction of skeletal muscles that lie inside or outside of its walls. MRI was used to determine the interaction between pharyngeal pressure and selective stimulation of extrinsic tongue muscles on the shape of the rat nasopharynx. Pressure (-9, -6, -3, 3, 6, and 9 cmH?O) was applied randomly to the isolated pharyngeal airway of anesthetized rats that were positioned in a 4.7-T MRI scanner. The anterior-posterior (AP) and lateral diameters of the nasopharynx were measured in eight axial slices at each level of pressure, with and without bilateral hypoglossal nerve stimulation (0.1-ms pulse, 1/3 maximal force, 80 Hz). The rat nasopharynx is nearly circular, and positive pharyngeal pressure caused similar expansion of AP and lateral diameters; as a result, airway shape (ratio of lateral to AP diameter) remained constant. Negative pressure did not change AP or lateral diameter significantly, suggesting that a negative pressure reflex activated the tongue or other pharyngeal muscles. Stimulation of tongue protrudor muscles alone or coactivation of protrudor and retractor muscles caused greater AP than lateral expansion, making the nasopharynx slightly more elliptical, with the long axis in the AP direction. These effects tended to be more pronounced at negative pharyngeal pressures and greater in the caudal than rostral nasopharynx. These data show that stimulation of rodent tongue muscles can adjust pharyngeal shape, extending previous work showing that tongue muscle contraction alters pharyngeal compliance and volume, and provide physiological insight that can be applied to the treatment of obstructive sleep apnea.  相似文献   
22.
A major challenge in plant systems biology is the development of robust, predictive multiscale models for organ growth. In this context it is important to bridge the gap between the, rather well‐documented molecular scale and the organ scale by providing quantitative methods to study within‐organ growth patterns. Here, we describe a simple method for the analysis of the evolution of growth patterns within rod‐shaped organs that does not require adding markers at the organ surface. The method allows for the simultaneous analysis of root and hypocotyl growth, provides spatio‐temporal information on curvature, growth anisotropy and relative elemental growth rate and can cope with complex organ movements. We demonstrate the performance of the method by documenting previously unsuspected complex growth patterns within the growing hypocotyl of the model species Arabidopsis thaliana during normal growth, after treatment with a growth‐inhibiting drug or in a mechano‐sensing mutant. The method is freely available as an intuitive and user‐friendly Matlab application called KymoRod.  相似文献   
23.
The medial branch (Med) of the hypoglossal nerve innervates the tongue protrudor muscles, whereas the lateral branch (Lat) innervates tongue retractor muscles. Our previous finding that pharyngeal airflow increased during either selective Med stimulation or whole hypoglossal nerve (WHL) stimulation (coactivation of protrudor and retractor muscles) led us to examine how WHL, Med, or Lat stimulation affected tongue movements and nasopharyngeal (NP) and oropharyngeal (OP) airway volume. Electrical stimulation of either WHL, Med, or Lat nerves was performed in anesthetized, tracheotomized rats while magnetic resonance images of the NP and OP were acquired (slice thickness 0.5 mm, in-plane resolution 0.25 mm). NP and OP volume was greater during WHL and Med stimulation vs. no stimulation (P < 0.05). Ventral tongue depression (measured in the midsagittal images) and OP volume were greater during Med stimulation than during WHL stimulation (P < 0.05). Lat stimulation did not alter NP volume (P = 0.39). Our finding that either WHL or Med stimulation dilates the NP and OP airways sheds new light on the control of pharyngeal airway caliber by extrinsic tongue muscles and may lead to new treatments for patients with obstructive sleep apnea.  相似文献   
24.
Mateika, J. H., and R. F. Fregosi. Long-termfacilitation of upper airway muscle activities in vagotomized andvagally intact cats. J. Appl. Physiol.82(2): 419-425, 1997.The primary purpose of the presentinvestigation was to determine whether long-term facilitation (LTF) ofupper airway muscle activities occurs in vagotomized and vagally intactcats. Tidal volume and diaphragm, genioglossus, and nasal dilatormuscle activities were recorded before, during, and after one carotidsinus nerve was stimulated five times with 2-min trains of constantcurrent. Sixty minutes after stimulation, nasal dilator andgenioglossus muscle activities were significantly greater than controlin the vagotomized cats but not in the vagally intact cats. Tidalvolume recorded from the vagotomized and vagally intact cats wassignificantly greater than control during the poststimulation period.In contrast, diaphragm activities were not significantly elevated inthe poststimulation period in either group of animals. We conclude that1) LTF of genioglossus and nasaldilator muscle activities can be evoked in vagotomized cats;2) vagal mechanisms inhibit LTF inupper airway muscles; and 3) LTF canbe evoked in accessory inspiratory muscles because LTF of inspiredtidal volume was greater than LTF of diaphragm activity.

  相似文献   
25.
The muscular-hydrostat model of tongue function proposes a constant interaction of extrinsic (external bony attachment, insertion into base of tongue) and intrinsic (origin and insertion within the tongue) tongue muscles in all tongue movements (Kier WM and Smith KK. Zool J Linn Soc 83: 207-324, 1985). Yet, research that examines the respiratory-related effects of tongue function in mammals continues to focus almost exclusively on the respiratory control and function of the extrinsic tongue protrusor muscle, the genioglossus muscle. The respiratory control and function of the intrinsic tongue muscles are unknown. Our purpose was to determine whether intrinsic tongue muscles have a respiration-related activity pattern and whether intrinsic tongue muscles are coactivated with extrinsic tongue muscles in response to respiratory-related sensory stimuli. Esophageal pressure and electromyographic (EMG) activity of an extrinsic tongue muscle (hyoglossus), an intrinsic tongue muscle (superior longitudinal), and an external intercostal muscle were studied in anesthetized, tracheotomized, spontaneously breathing rats. Mean inspiratory EMG activity was compared at five levels of inspired CO2. Intrinsic tongue muscles were often quiescent during eupnea but active during hypercapnia, whereas extrinsic tongue muscles were active in both eupnea and hypercapnia. During hypercapnia, the activities of the airway muscles were largely coincident, although the onset of extrinsic muscle activity generally preceded the onset of intrinsic muscle activation. Our findings provide evidence, in an in vivo rodent preparation, of respiratory modulation of motoneurons supplying intrinsic tongue muscles. Distinctions noted between intrinsic and extrinsic activities could be due to differences in motoneuron properties or the central, respiration-related control of each motoneuron population.  相似文献   
26.
We studied the influence of central and peripheral chemoreceptor stimulation on the activities of the phrenic and internal intercostal (iic) nerves in decerebrate, vagotomized, and paralyzed cats with bilateral pneumothoraces. Whole iic nerves of the rostral thorax (T2-T5) usually discharged during neural inspiration, whereas those of the caudal thorax (T7-T11) were primarily active during neural expiration. Filaments of rostral iic nerves that terminated in iic muscles generally discharged during expiration, suggesting that inspiratory activity recorded in whole iic nerves may have innervated other structures, possibly parasternal muscles. All nerves were phasically active at hyperoxic normocapnia and increased their activities systematically with hypercapnia. Isocapnic hypoxia or intra-arterial NaCN injection consistently increased phrenic and inspiratory iic nerve activities. In contrast, expiratory iic nerve discharges were either decreased (10 cats) or increased (7 cats) by hypoxia. Furthermore, expiratory responses to NaCN were highly variable and could not be predicted from the corresponding response to hypoxia. The results show that central and peripheral chemoreceptor stimulation can affect inspiratory and expiratory motoneuron activities differentially. The variable effects of hypoxia on expiratory iic nerve activity may reflect a relatively weak influence of carotid body afferents on expiratory bulbospinal neurons. However, the possibility that the magnitude of expiratory motoneuron activity is influenced by the intensity of the preceding centrally generated inspiratory discharge is also discussed.  相似文献   
27.
Prenatal nicotine exposure with continued exposure through breast milk over the first week of life (developmental nicotine exposure, DNE) alters the development of brainstem circuits that control breathing. Here, we test the hypothesis that DNE alters the respiratory motor response to endogenous and exogenous acetylcholine (ACh) in neonatal rats. We used the brainstem‐spinal cord preparation in the split‐bath configuration, and applied drugs to the brainstem compartment while measuring the burst frequency and amplitude of the fourth cervical ventral nerve roots (C4VR), which contain the axons of phrenic motoneurons. We applied ACh alone; the nicotinic acetylcholine receptor (nAChR) antagonist curare, either alone or in the presence of ACh; and the muscarinic acetylcholine receptor (mAChR) antagonist atropine, either alone or in the presence of ACh. The main findings include: (1) atropine reduced frequency similarly in controls and DNE animals, while curare caused modest slowing in controls but no consistent change in DNE animals; (2) DNE greatly attenuated the increase in C4VR frequency mediated by exogenous ACh; (3) stimulation of nAChRs with ACh in the presence of atropine increased frequency markedly in controls, but not DNE animals; (4) stimulation of mAChRs with ACh in the presence of curare caused a modest increase in frequency, with no treatment group differences. DNE blunts the response of the respiratory central pattern generator to exogenous ACh, consistent with reduced availability of functionally competent nAChRs; DNE did not alter the muscarinic control of respiratory motor output. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1138–1149, 2016  相似文献   
28.
Repeated electrical or hypoxic stimulation of peripheral chemoreceptors has been shown to cause a persistent poststimulus increase in respiratory motoneuron activity, termed long-term facilitation (LTF). LTF after episodic hypoxia has been demonstrated most consistently in anesthetized, vagotomized, paralyzed, artificially ventilated rats. Evidence for LTF in spontaneously breathing animals and humans after episodic hypoxia is equivocal and may have been influenced by the awake state of the subjects in these studies. The present study was designed to test the hypothesis that LTF is evoked in respiratory-related tongue muscle and inspiratory pump muscle activities after episodic hypoxia in 10 spontaneously breathing, anesthetized, vagotomized rats. The animals were exposed to three (5-min) episodes of isocapnic hypoxia, separated by 5 min of hyperoxia (50% inspired oxygen). Genioglossus, hyoglossus, and inspiratory intercostal EMG activities, along with respiratory-related tongue movements and esophageal pressure, were recorded before, during, and for 60 min after the end of episodic isocapnic hypoxia. We found no evidence for LTF in tongue muscle (genioglossus, hyoglossus) or inspiratory pump muscle (inspiratory intercostal) activities after episodic hypoxia. Rather, the primary poststimulus effect of episodic hypoxia was diminished respiratory frequency, which contributed to a reduction in ventilatory drive.  相似文献   
29.
Here we review the influence of bronchopulmonary receptors (slowly and rapidly adapting pulmonary stretch receptors, and pulmonary/bronchial C-fiber receptors) on respiratory-related motor output to upper airway muscles acting on the larynx, tongue, and hyoid arch. Review of the literature shows that all muscles in all three regions are profoundly inhibited by lung inflation, which excites slowly adapting pulmonary stretch receptors. This widespread coactivation includes the recruitment of muscles that have opposing mechanical actions, suggesting that the stiffness of upper airway muscles is highly regulated. A profound lack of information on the modulation of upper airway muscles by rapidly adapting receptors and bronchopulmonary C-fiber receptors prohibits formulation of a conclusive opinion as to their actions and underscores an urgent need for new studies in this area. The preponderance of the data support the view that discharge arising in slowly adapting pulmonary stretch receptors plays an important role in the initiation of the widespread and highly coordinated recruitment of laryngeal, tongue, and hyoid muscles during airway obstruction.  相似文献   
30.
We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号