首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20120篇
  免费   1706篇
  国内免费   5篇
  21831篇
  2023年   88篇
  2022年   232篇
  2021年   434篇
  2020年   234篇
  2019年   307篇
  2018年   424篇
  2017年   353篇
  2016年   636篇
  2015年   1030篇
  2014年   1172篇
  2013年   1416篇
  2012年   1752篇
  2011年   1653篇
  2010年   1063篇
  2009年   937篇
  2008年   1265篇
  2007年   1296篇
  2006年   1110篇
  2005年   1061篇
  2004年   1035篇
  2003年   940篇
  2002年   891篇
  2001年   205篇
  2000年   144篇
  1999年   153篇
  1998年   233篇
  1997年   150篇
  1996年   137篇
  1995年   126篇
  1994年   112篇
  1993年   103篇
  1992年   81篇
  1991年   69篇
  1990年   67篇
  1989年   62篇
  1988年   52篇
  1987年   62篇
  1986年   45篇
  1985年   52篇
  1984年   47篇
  1983年   69篇
  1982年   45篇
  1981年   37篇
  1980年   39篇
  1979年   36篇
  1978年   44篇
  1977年   41篇
  1976年   33篇
  1974年   33篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Representing a physiological “Achilles' heel”, the cell wall precursor lipid II (LII) is a prime target for various classes of antibiotics. Over the years LII-binding agents have been recognized as promising candidates and templates in the search for new antibacterial compounds to complement or replace existing drugs. To elucidate the molecular structural basis underlying LII functional mechanism and to better understand if and how lantibiotic binding alters the molecular behavior of LII, we performed molecular dynamics (MD) simulations of phospholipid membrane-embedded LII in the absence and presence of the LII-binding lantibiotic nisin. In a series of 2 × 4 independent, unbiased 100 ns MD simulations we sampled the conformational dynamics of nine LII as well as nine LII–nisin complexes embedded in an aqueous 150 mM NaCl/POPC phospholipid membrane environment. We found that nisin binding to LII induces a reduction of LII mobility and flexibility, an outward shift of the LII pentapeptide, an inward movement of the LII disaccharide section, and an overall deeper insertion of the LII tail group into the membrane. The latter effect might indicate an initial step in adopting a stabilizing, scaffold-like structure in the process of nisin-induced membrane leakage. At the same time nisin conformation and LII interaction remain similar to the 1WCO LII–nisin NMR solution structure.  相似文献   
942.
Cheese intake has been shown to decrease total cholesterol and LDL cholesterol concentrations when compared to butter of equal fat content. An untargeted metabolite profiling may reveal exposure markers of cheese but may also contribute with markers which can help explain how the intake of cheese affects cholesterol concentrations. Twenty-three subjects collected 2 × 24 h urine samples after 6 weeks of cheese and 6 weeks of butter intake with equal amounts of fat in a cross-over intervention study. The samples were analyzed by UPLC-QTOF/MS. A two-step univariate data analysis approach using linear mixed model was applied separately for positive and negative ionization mode: In the first step a total of 44 features related to treatment were identified and in the second step 36 of these features were related to total cholesterol concentrations. Cheese intake resulted in increased urinary indoxyl sulfate, xanthurenic acid, tyramine sulfate, 4-hydroxyphenylacetic acid, isovalerylglutamic acid and several acylglycines including isovalerylglycine, tiglylglycine and isobutyrylglycine when compared to butter intake of equal fat content. The biological mechanisms of action linking the metabolites to cholesterol concentrations need to be further explored.  相似文献   
943.
Abnormalities in metabolite profiles are valuable indicators of underlying pathologic conditions at the molecular level. However, their interpretation relies on detailed knowledge of the pathways, enzymes, and genes involved. Identification and characterization of their physiological function are therefore crucial for our understanding of human disease: they can provide guidance for therapeutic intervention and help us to identify suitable biomarkers for monitoring associated disorders. We studied two individuals with 2-aminoadipic and 2-oxoadipic aciduria, a metabolic condition that is still unresolved at the molecular level. This disorder has been associated with varying neurological symptoms. Exome sequencing of a single affected individual revealed compound heterozygosity for an initiating methionine mutation (c.1A>G) and a missense mutation (c.2185G>A [p.Gly729Arg]) in DHTKD1. This gene codes for dehydrogenase E1 and transketolase domain-containing protein 1, which is part of a 2-oxoglutarate-dehydrogenase-complex-like protein. Sequence analysis of a second individual identified the same missense mutation together with a nonsense mutation (c.1228C>T [p.Arg410]) in DHTKD1. Increased levels of 2-oxoadipate in individual-derived fibroblasts normalized upon lentiviral expression of the wild-type DHTKD1 mRNA. Moreover, investigation of L-lysine metabolism showed an accumulation of deuterium-labeled 2-oxoadipate only in noncomplemented cells, demonstrating that DHTKD1 codes for the enzyme mediating the last unresolved step in the L-lysine-degradation pathway. All together, our results establish mutations in DHTKD1 as a cause of human 2-aminoadipic and 2-oxoadipic aciduria via impaired turnover of decarboxylation 2-oxoadipate to glutaryl-CoA.  相似文献   
944.
Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.  相似文献   
945.
Although all plant and animal species harbor microbial symbionts, we know surprisingly little about the specificity of microbial communities to their hosts. Few studies have compared the microbiomes of different species of animals, and fewer still have examined animals in the wild. We sampled four pond habitats in Colorado, USA, where multiple amphibian species were present. In total, 32 amphibian individuals were sampled from three different species including northern leopard frogs (Lithobates pipiens), western chorus frogs (Pseudacris triseriata) and tiger salamanders (Ambystoma tigrinum). We compared the diversity and composition of the bacterial communities on the skin of the collected individuals via barcoded pyrosequencing of the 16S rRNA gene. Dominant bacterial phyla included Acidobacteria, Actinobacteria, Bacteriodetes, Cyanobacteria, Firmicutes and Proteobacteria. In total, we found members of 18 bacterial phyla, comparable to the taxonomic diversity typically found on human skin. Levels of bacterial diversity varied strongly across species: L. pipiens had the highest diversity; A. tigrinum the lowest. Host species was a highly significant predictor of bacterial community similarity, and co-habitation within the same pond was not significant, highlighting that the skin-associated bacterial communities do not simply reflect those bacterial communities found in their surrounding environments. Innate species differences thus appear to regulate the structure of skin bacterial communities on amphibians. In light of recent discoveries that some bacteria on amphibian skin have antifungal activity, our finding suggests that host-specific bacteria may have a role in the species-specific resistance to fungal pathogens.  相似文献   
946.
Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cells but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad.  相似文献   
947.
During spring-summer 2009, several observational studies from Canada showed increased risk of medically-attended, laboratory-confirmed A(H1N1)pdm09 illness among prior recipients of 2008–09 trivalent inactivated influenza vaccine (TIV). Explanatory hypotheses included direct and indirect vaccine effects. In a randomized placebo-controlled ferret study, we tested whether prior receipt of 2008–09 TIV may have directly influenced A(H1N1)pdm09 illness. Thirty-two ferrets (16/group) received 0.5 mL intra-muscular injections of the Canadian-manufactured, commercially-available, non-adjuvanted, split 2008–09 Fluviral or PBS placebo on days 0 and 28. On day 49 all animals were challenged (Ch0) with A(H1N1)pdm09. Four ferrets per group were randomly selected for sacrifice at day 5 post-challenge (Ch+5) and the rest followed until Ch+14. Sera were tested for antibody to vaccine antigens and A(H1N1)pdm09 by hemagglutination inhibition (HI), microneutralization (MN), nucleoprotein-based ELISA and HA1-based microarray assays. Clinical characteristics and nasal virus titers were recorded pre-challenge then post-challenge until sacrifice when lung virus titers, cytokines and inflammatory scores were determined. Baseline characteristics were similar between the two groups of influenza-naïve animals. Antibody rise to vaccine antigens was evident by ELISA and HA1-based microarray but not by HI or MN assays; virus challenge raised antibody to A(H1N1)pdm09 by all assays in both groups. Beginning at Ch+2, vaccinated animals experienced greater loss of appetite and weight than placebo animals, reaching the greatest between-group difference in weight loss relative to baseline at Ch+5 (7.4% vs. 5.2%; p = 0.01). At Ch+5 vaccinated animals had higher lung virus titers (log-mean 4.96 vs. 4.23pfu/mL, respectively; p = 0.01), lung inflammatory scores (5.8 vs. 2.1, respectively; p = 0.051) and cytokine levels (p>0.05). At Ch+14, both groups had recovered. Findings in influenza-naïve, systematically-infected ferrets may not replicate the human experience. While they cannot be considered conclusive to explain human observations, these ferret findings are consistent with direct, adverse effect of prior 2008–09 TIV receipt on A(H1N1)pdm09 illness. As such, they warrant further in-depth investigation and search for possible mechanistic explanations.  相似文献   
948.
We report here the utility of major histocompatibility complex (MHC) class II dextramers for in situ detection of self-reactive CD4 T cells in two target organs, the brain and heart. We optimized the conditions for in situ detection of antigen-specific CD4 T cells using brain sections obtained from SJL mice immunized with myelin proteolipid protein (PLP) 139–151; the sections were costained with IAs/PLP 139–151 (specific) or Theiler''s murine encephalomyelitis virus (TMEV) 70–86 (control) dextramers and anti-CD4. Analysis of sections by laser scanning confocal microscope revealed detection of cells positive for PLP 139–151 but not for TMEV 70–86 dextramers to be colocalized with CD4-expressing T cells, indicating that the staining was specific to PLP 139–151 dextramers. Further, we devised a method to reliably enumerate the frequencies of antigen-specific T cells by counting the number of dextramer+ CD4+ T cells in the ‘Z’ serial images acquired sequentially. We next extended these observations to detect cardiac myosin-specific T cells in autoimmune myocarditis induced in A/J mice by immunizing with cardiac myosin heavy chain-α (Myhc) 334–352. Heart sections prepared from immunized mice were costained with Myhc 334–352 (specific) or bovine ribonuclease 43–56 (control) dextramers together with anti-CD4; the sections showed the infiltrations of Myhc-specific CD4 T cells. The data suggest that MHC class II dextramers are useful tools for enumerating the frequencies of antigen-specific CD4 T cells in situ by direct staining without having to amplify the fluorescent signals, an approach commonly employed with conventional MHC tetramers.  相似文献   
949.
950.
In the mature brain, the neurotransmitter GABA can cause a postsynaptic hyperpolarization via activation of chloride permeant GABAA receptor channels. This hyperpolarizing response critically depends on chloride extrusion via the KCl‐cotransporter KCC2 1 . Its knockdown in mice impairs synaptic inhibition by changing the electrochemical potential for chloride and thus increases neuronal excitability 2 3 . Two independent groups provide first evidence now, published in EMBO reports, that rare variants of KCC2 confer an increased risk of epilepsy in men 4 5 .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号