首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44480篇
  免费   3654篇
  国内免费   4篇
  2023年   222篇
  2021年   338篇
  2020年   292篇
  2019年   286篇
  2018年   893篇
  2017年   919篇
  2016年   982篇
  2015年   825篇
  2014年   978篇
  2013年   1793篇
  2012年   3084篇
  2011年   3438篇
  2010年   1744篇
  2009年   1133篇
  2008年   2835篇
  2007年   2917篇
  2006年   2688篇
  2005年   2420篇
  2004年   2305篇
  2003年   2156篇
  2002年   2171篇
  2001年   1487篇
  2000年   1734篇
  1999年   904篇
  1998年   428篇
  1997年   341篇
  1996年   406篇
  1995年   355篇
  1994年   372篇
  1993年   335篇
  1992年   360篇
  1991年   294篇
  1990年   268篇
  1989年   251篇
  1988年   239篇
  1987年   241篇
  1986年   205篇
  1985年   297篇
  1984年   361篇
  1983年   326篇
  1982年   307篇
  1981年   292篇
  1980年   259篇
  1979年   252篇
  1978年   258篇
  1977年   239篇
  1976年   240篇
  1975年   285篇
  1974年   208篇
  1973年   196篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Mechanism of the anticoagulant action of heparin   总被引:20,自引:0,他引:20  
Summary The anticoagulant effect of heparin, a sulfated glycosaminoglycan produced by mast cells, requires the participation of the plasma protease inhibitor antithrombin, also called heparin cofactor. Antithrombin inhibits coagulation proteases by forming equimolar, stable complexes with the enzymes. The formation of these complexes involves the attack by the enzyme of a specific Arg-Ser bond in the carboxy-terminal region of the inhibitor. The complexes so formed are not dissociated by denaturing solvents, which indicates that a covalent bond may contribute to their stability. This bond may be an acyl bond between the active-site serine of the enzyme and the arginine of the cleaved reactive bond of the inhibitor. However, the native complexes dissociate slowly at near-neutral pH into free enzyme and a modified inhibitor, cleaved at the reactive bond. So, antithrombin apparently functions as a pseudo-substrate that traps the enzyme in a kinetically stable complex.The reactions between antithrombin and coagulation proteases are slow in the absence of heparin. However, optimal amounts of heparin accelerate these reactions up to 2 000-fold, thereby efficiently preventing the formation of fibrin in blood. The accelerating effect, and thus the anticoagulant activity, is shown by only about one-third of the molecules in all heparin preparations, while the remaining molecules are almost inactive. The highly active molecules bind tightly to antithrombin, i.e. with a binding constant of slightly below 108 M–1 at physiological ionic strength, while the relatively inactive molecules bind about a thousand-fold more weakly. The binding of the high-affinity heparin to antithrombin is accompanied by a conformational change in the inhibitor that is detectable by spectroscopic and kinetic methods. This conformational change follows an initial, weak binding of heparin to antithrombin and causes the tight interaction between polysaccharide and inhibitor that is prerequisite to heparin anticoagulant activity. It has also been postulated that the conformational change leads to a more favourable exposure of the reactive site of antithrombin, thereby allowing the rapid interaction with the proteases.Heparin also binds to the coagulation proteases. Recent studies indicate that this binding is weaker and less specific that the binding to antithrombin. Nevertheless, for some enzymes, thrombin, Factor IXa and Factor XIa, an interaction between heparin and the protease, in addition to that between the polysaccharide and antithrombin; apparently is involved in the accelerated inhibition of the enzymes. The effect of this interaction may be to approximate enzyme with inhibitor in an appropriate manner. However, the bulk of the evidence available indicates that binding of heparin to the protease alone cannot be responsible for the accelerating effect of the polysaccharide on the antithrombin-protease reaction.Heparin acts as a catalyst in the antithrombin-protease reaction, i.e. it accelerates the reaction in non-stoichiometric amounts and is not consumed during the reaction. This ability can be explained by heparin being released from the antithrombin-protease complex for renewed binding to antithrombin, once the complex has been formed. Such a decresed affinity of heparin for the antithrombin complex, compared to the affinity for antithrombin alone, has been demonstrated.The structure of the antithrombin-binding region in heparin has been investigated following the isolation of oligosaccharides with high affinity for antithrombin. The smallest such oligosaccharide, an octasaccharide, obtained after partial random depolymerization of heparin with nitrous acid, was found to contain a unique glucosamine-3-O-sulfate group, which could not be detected in other portions of the high affinity heparin molecule and which was absent in heparin with low affinity for antithrombin. The actual antithrombin-binding region within this octasaccharide molecule has been identified as a pentasaccharide sequence with he predominant structure: N-acetyl-D-glucosamine(6-O-SO3)D-glucoronic acidD-glucosamine(N-SO3;3,6-di-O-SO3)L-iduronic acid(2-O-SO3)D-glucosamine(N-SO3;6-O-SO3). In addition to the 3-O-sulfate group, both N-sulfate groups as well as the 6-O-sulfate group of the N-acetylated glucosamine unit appear to be essential for the interaction with antithrombin. The remarkably constant structure of this sequence, as compared to other regions of the heparin molecule, suggests a strictly regulated mechanism of biosynthesis.The ability of heparin to potentiate the inhibition of blood coagulation by antithrombin generally decreases with decreasing molecular weight of the polysaccharide. However, individual coagulation enzymes differ markedly with regard to this molecular-weight dependence. Oligosaccharides in the extreme low-molecular weight range, i.e. octa- to dodecasaccharides, with high affinity for antithrombin have high anti-Factor Xa-activity but are virtually unable to potentiate the inhibition of thrombin. Furthermore, such oligosaccharides are ineffective in preventing experimentally induced venous thrombosis in rabbits. Slightly larger oligosaccharides, containing 16 to 18 monosaccharide residues, show significant anti-thrombin as well as antithrombotic activities, yet have little effect on overall blood coagulation. These findings indicate that the affinity of a heparin fragment for antithrombin is not in itself a measure of the ability to prevent venous thrombo-genesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential as an antithrombotic agent.The biological role of the interaction between heparin and antithrombin is unclear. In addition to a possible function in the regulation of hemostasis, endogenous heparin may serve as a regulator of extravascular serine proteinases. Mouse peritoneal macrophages have been found to synthesize all the enzymes that constitute the extrinsic pathway of coagulation. Moreover, tissue thromboplastin is produced by these cells in response to a functional interaction with activated T-lymphocytes. The inhibition of this extravascular coagulation system by heparin, released from mast cells, may be potentially important in modulating inflammatory reactions.  相似文献   
992.
Summary All the five enzymes of urea synthesis and the formation of urea in vitro can already be demonstrated in human liver as early as the 9th week of fetal development. At this stage the activity of carbamoyl phosphate synthetase is the highest, whereas that of ornithine carbamoyltransferase is the lowest as compared to those in the adult. The kinetic parameters of the urea cycle enzymes are the same in fetal liver as in adult liver, except that the Km values of ornithine carbamoyltransferase for L-ornithine are 3.5 mM and 0.42 mM in the fetus and in adult liver, respectively.Urea formation in vivo seems to begin in the second half of fetal life, and a gradual increase can be detected in the activity of the enzymes of urea synthesis. The activity of ortnithine decarboxylase, the glutamine-dependent carbamoyl phosphate synthetase and aspartate carbamoyltransferase, however, changes in the opposite direction.The concentration of carbamoyl phosphate and aspartate remains constant, but that of ornithine gradually decreases during ontogenesis. The ornithine, carbamoyl phosphate and aspartate pools are probably utilized in the polyamine, pyrimidine and urea syntheses at varying rates.  相似文献   
993.
Photosynthetic c-type cytochromes isolated from various pro- and eukaryotic algae have been compared by an immunochemical method. Thereby the extent of cross-reactivity of several cytochromes with antisera to cytochrome c from Spirulina platensis, Bumilleriopsis filiformis, and Scenedesmus acutus was quantitatively determined by antigen-binding tests. When immunological relationship is taken as a measure of structural relationship, the following conclusions can be drawn: (1) c-type cytochromes from Anabaena variabilis, Nostoc muscorum, Calothrix membranacea, and Spirulina platensis show large differences in cross-reactivity. (2) The acidic Spirulina cytochrome c is fairly closely related to the two eukaryotic cytochromes assayed here.Abbreviations SAUG Sammlung von Algenkulturen am Pflanzenphysiologischen Institut der Universität Göttingen, FRG - PCC Pasteur Culture Collection  相似文献   
994.
Summary In a previous publication it has been shown that the radiation induced physiological inactivation of dibutyryl-cAMP was far more pronounced than the chemical modification (Schachinger et al. 1981). In this paper it will be shown, that irradiation of dib-cAMP in solution resulted in the formation of monobutyryl cAMP and other not yet completely identified hydroxylated derivatives as well as a decomposition of the purine structure. Moreover, irradiated dib-cAMP inhibited the physiological activity of not irradiated dib-cAMP on the smooth muscle. From the data an effectiveK m -value for dib-cAMP of 2.4 × 10–5 M was determined and an effectiveK I -value of 1.3 × 10–6 M was found for the irradiation products, i.e., a tenfold affinity of the latter compared to unirradiated dib-cAMP. The results are discussed with respect to a better understanding of dose-response curves for chemical and physiological inactivation.  相似文献   
995.
The influence of different physiological states on the glucose uptake and mineralization by Cytophaga johnsonae, a freshwater isolate, was examined in batch and chemostat cultures. At different growth rates under glucose limitation in chemostat cultures, different uptake patterns for 14C labeled glucose were observed. In batch culture and at high growth rates the glucose uptake potential showed a higher maximum velocity and a much lower substrate affinity than at lower growth rates. These findings and the results of short-term labeling patterns could be explained by two different glucose uptake mechanisms which enable the strain to grow efficiently both at high and low substrate concentrations. Substrate specificity studies showed that a structural change of the C-2 atom of the glucose molecule was tolerated by both systems. The consequences of these results for the ecophysiological classification of the Cytophaga group and for the operation of continuous cultures are discussed.  相似文献   
996.
In view of the development of al-carnitine deficiency, the metabolism ofl-carnitine and structure-related trimethylammonium compounds was studied inSalmonella typhimurium LT2 by means of thin-layer chromatography (TLC).l-Carnitine, crotonobetaine and acetyl-l-carnitine stimulated the anaerobic growth in a complex medium significantly. The stimulation depended on the formation of -butyrobetaine. The reduction ofl-carnitine proceeded in two steps: (1) Dehydration of thel-carnitine to crotonobetaine, (2) hydrogenation of crotonobetaine to -butyrobetaine. The reduction of crotonobetaine was responsible for the growth stimulation. Terminal electron acceptors of the anaerobic respiration such as nitrate and trimethylamine N-oxide, but not fumarate, suppressed the catabolism ofl-carnitine completely. Glucose fermentation, too, inhibited the reduction ofl-carnitine but optimal growth with a high carnitine catabolism was achieved byd-ribose. The esters of carnitine with medium- and long-chain fatty acids inhibited the growth considerably because of their detergent properties.Abbreviations TLC thin-layer chromatography  相似文献   
997.
  1. With fumarate as the terminal electron acceptor and either H2 or formate as donor, Vibrio succinogenes could grow anaerobically in a mineral medium using fumarate as the sole carbon source. Both the growth rate and the cell yield were increased when glutamate was also present in the medium.
  2. Glutamate was incorporated only into the amino acids of the glutamate family (glutamate, glutamine, proline and arginine) of the protein. The residual cell constituents were synthesized from fumarate.
  3. Pyruvate and phosphoenolpyruvate, as the central intermediates of most of the cell constituents, were formed through the action of malic enzyme and phosphoenolpyruvate synthetase. Fructose-1,6-bisphosphate aldolase was present in the bacterium suggesting that this enzyme is involved in carbohydrate synthesis.
  4. In the absence of added glutamate the amino acids of the glutamate family were synthesized from fumarate via citrate. The enzymes involved in glutamate synthesis were present.
  5. During growth in the presence of glutamate, net reducing equivalents were needed for cell synthesis. Glutamate and not H2 or formate was used as the source of these reducing equivalents. For this purpose part of the glutamate was oxidized to yield succinate and CO2.
  6. The α-ketoglutarate dehydrogenase involved in this reaction was found to use ferredoxin as the electron acceptor. The ferredoxin of the bacterium was reoxidized by means of a NADP-ferredoxin oxidoreductase. Enzymes catalyzing the reduction of NAD, NADP or ferredoxin by H2 or formate were not detected in the bacterium.
  相似文献   
998.
In the present work a linear model for a pair of antogonistic muscles is analysed. Each constituent muscle in this model is identical to ones considered previously (Stein and Ouztöreli, 1976). Analytical properties of the antagonistic muscles and dynamics of the system are described and some numerical results are discussed. The natural modes of the system are determined by a fourth order polynomial, which most commonly has one pair of conjugate complex roots and two negative real roots. The filtering of neural inputs through the active state properties of the muscle increases the order of the system to fifth order for these inputs.This work was partly supported by the National Scientific and Engineering Research Council of Canada Grant NRC-A4345 and by the Medical Research Council of Canada Grant MRC-MT-3307 through the University of Alberta  相似文献   
999.
In a recent work (Ouztöreli, 1980) a mathematical model for studying the neural activities in a vertebrate retina has been investigated, where the basic network contains five interconnected neurons: a receptor cell, a bipolar cell, a horizontal cell, an amacrine cell, and a retinal ganglion cell. More recently, in (Ouztöreli and O'Mara, 1980) the basic network has been extended to a larger network containing twelve neurons. In both of these works, the performances of the basic and extended models were discussed under different structural and processing conditions with constant inputs by using the results of one of our earlier work (Ouztöreli, 1979). In the present paper we investigate by simulations the responses of the basic retinal network to piecewise constant and periodic inputs. The step and frequency responses of the extended retinal network will be discussed in a forthcoming paper.This work was partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant A-4345 through the University of alberta  相似文献   
1000.
Summary Double heterozygosity of pyruvate kinase (PK) deficiency associated with hereditary hemolytic anemia is emphasized by studies of a kindred harboring two distinct mutant forms of this enzyme. The hematologically unaffected parents exhibit slightly reduced PK activity, a normal Hill coefficient, and a normal thermodynamic dissociation constant for the overall reaction. The paternal enzyme is characterized by normal substrate affinities and decreased activities with the substrate analogues CDP and GDP, whereas the maternal enzyme shows normal affinity for PEP, but an increased affinity for ADP and low thermostability. It is assumed that the erythrocytes of the parents contain a mixture of normal PK and a functionally abnormal isoenzyme, the latter differing between the parents. The two children suffer from hereditary hemolytic anemia. Their PK must be a combination of the mutant paternal and maternal isoenzymes, and their activities are reduced to about 30%. These enzymes are characterized by an increased affinity for PEP and a decreased affinity for ADP, a Hill coefficient of about 1 (indicating lack of cooperativity due to a loss of its allosteric properties), a decreased overall catalytic activity, and a higher resistance to heat denaturation. Further differences are observed in the SDS-gel electrophoresis between the two patients' enzymes. From the enzymological point of view it is impossible to characterize true PK variants in such double heterozygous cases which contain a combination of two different isoenzymes. The cause of chronic hemolysis appears to depend mainly on the loss of the allosteric properties, i.e., the lack of enzyme cooperativity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号