首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1156篇
  免费   82篇
  2023年   2篇
  2022年   9篇
  2021年   21篇
  2020年   9篇
  2019年   16篇
  2018年   15篇
  2017年   15篇
  2016年   40篇
  2015年   61篇
  2014年   67篇
  2013年   64篇
  2012年   115篇
  2011年   97篇
  2010年   62篇
  2009年   59篇
  2008年   79篇
  2007年   73篇
  2006年   46篇
  2005年   81篇
  2004年   68篇
  2003年   58篇
  2002年   59篇
  2001年   17篇
  2000年   5篇
  1999年   14篇
  1998年   18篇
  1997年   7篇
  1996年   5篇
  1995年   9篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1968年   2篇
  1965年   1篇
  1962年   2篇
  1936年   1篇
排序方式: 共有1238条查询结果,搜索用时 31 毫秒
71.
Vertebrates produce various chondroitin sulfate proteoglycans (CSPGs) that are important structural components of cartilage and other connective tissues. CSPGs also contribute to the regulation of more specialized processes such as neurogenesis and angiogenesis. Although many aspects of CSPGs have been studied extensively, little is known of where the CS chains are attached on the core proteins and so far, only a limited number of CSPGs have been identified. Obtaining global information on glycan structures and attachment sites would contribute to our understanding of the complex proteoglycan structures and may also assist in assigning CSPG specific functions. In the present work, we have developed a glycoproteomics approach that characterizes CS linkage regions, attachment sites, and identities of core proteins. CSPGs were enriched from human urine and cerebrospinal fluid samples by strong-anion-exchange chromatography, digested with chondroitinase ABC, a specific CS-lyase used to reduce the CS chain lengths and subsequently analyzed by nLC-MS/MS with a novel glycopeptide search algorithm. The protocol enabled the identification of 13 novel CSPGs, in addition to 13 previously established CSPGs, demonstrating that this approach can be routinely used to characterize CSPGs in complex human samples. Surprisingly, five of the identified CSPGs are traditionally defined as prohormones (cholecystokinin, chromogranin A, neuropeptide W, secretogranin-1, and secretogranin-3), typically stored and secreted from granules of endocrine cells. We hypothesized that the CS side chain may influence the assembly and structural organization of secretory granules and applied surface plasmon resonance spectroscopy to show that CS actually promotes the assembly of chromogranin A core proteins in vitro. This activity required mild acidic pH and suggests that the CS-side chains may also influence the self-assembly of chromogranin A in vivo giving a possible explanation to previous observations that chromogranin A has an inherent property to assemble in the acidic milieu of secretory granules.Chondroitin sulfates (CS)1 are complex polysaccharides present at cell surfaces and in extracellular matrices. The polysaccharides belong to a subclass of glycosaminoglycans (GAGs) and are covalently linked to various core proteins to form CS-proteoglycans (CSPGs), each with differences in the protein structures and/or numbers of CS side chains. Apart from their structural role in cartilage, CSPGs contribute to the regulation of a diverse set of biological processes such as neurogenesis, growth factor signaling, angiogenesis, and morphogenesis (15). Although the molecular basis of CSPGs functions remains elusive, accumulating evidence suggests that the underlying activities relate to selective ligand binding to discrete structural variants of the polysaccharides. Thus, the current strategy for understanding the biological role of CSPGs aims to identify selective CS polysaccharide–ligand interactions. However, information on the number of CS-chains and their specific attachment site(s) on any given core protein is often scarce which limits our functional understanding of CSPGs.The biosynthesis of GAGs occurs in the endoplasmic reticulum and Golgi compartments and is initiated by the enzymatic addition of a beta-linked xylose (Xyl) to a Ser residue of the core protein. The sequential addition of two galactose residues (Gal) and a glucuronic acid (GlcA) onto the growing saccharide chain completes the formation of a tetrasaccharide linkage region (GlcAβ3Galβ3Galβ4XylβSer). This part of the biosynthesis is the same for CS and heparan sulfate (HS). However, for CS the biosynthesis continues with the addition of an N-acetylgalactosamine (GalNAcβ3), whereas HS biosynthesis continues with the addition of an N-acetylglucosamine (GlcNAcα4) (6). The CS-chains are thereafter elongated through the addition of repeating units of GlcA and GalNAc and are further modified by the addition of specifically positioned sulfate groups (7). Certain features of the core protein seem to influence if a certain Ser residue is selected for GAG attachment and whether CS or HS will be synthesized, but the selection mechanism is largely unknown. Sequence analysis of previously known GAG-substituted core proteins reveals that the glycosylated serine residues are usually flanked by a glycine residue (-SG-), and are associated with a cluster of acidic residues in close proximity (8). This motif may assist in the prediction of potential GAG-sites of core proteins; however, the use of such strategy is ambiguous because proteoglycans may also contain unoccupied motifs or motifs that are occasionally occupied (9).Glycoproteomics strategies have recently appeared that provide site-specific information of N- and O-glycans. Such strategies are typically based on a specific enrichment of glycopeptides and a subsequent analysis with nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) (10). By further developing this concept for proteoglycans (11), we have now analyzed CSPG linkage region glycopeptides of human samples, which enabled us to identify 13 novel human CSPGs in addition to 13 already established CSPGs. Urine and cerebrospinal fluid (CSF) samples were trypsinized and CS glycopeptides were enriched using strong anion exchange (SAX) chromatography. The CS chains were depolymerized with chondroitinase ABC, generating free disaccharides and a residual hexameric structure composed of the linkage region and a GlcA-GalNAc disaccharide dehydrated on the terminal GlcA residue (12). MS/MS analysis provided the combined sequencing of the residual hexasaccharide and of the core peptide.  相似文献   
72.
The aims of the present study were to compare the effects of 1) training at 90 and 100% sprint velocity and 2) supervised versus unsupervised sprint training on soccer-specific physical performance in junior soccer players. Young, male soccer players (17 ±1 yr, 71 ±10 kg, 180 ±6 cm) were randomly assigned to four different treatment conditions over a 7-week intervention period. A control group (CON, n=9) completed regular soccer training according to their teams’ original training plans. Three training groups performed a weekly repeated-sprint training session in addition to their regular soccer training sessions performed at A) 100% intensity without supervision (100UNSUP, n=13), B) 90% of maximal sprint velocity with supervision (90SUP, n=10) or C) 90% of maximal sprint velocity without supervision (90UNSUP, n=13). Repetitions x distance for the sprint-training sessions were 15x20 m for 100UNSUP and 30x20 m for 90SUP and 90UNSUP. Single-sprint performance (best time from 15x20 m sprints), repeated-sprint performance (mean time over 15x20 m sprints), countermovement jump and Yo-Yo Intermittent Recovery Level 1 (Yo-Yo IR1) were assessed during pre-training and post-training tests. No significant differences in performance outcomes were observed across groups. 90SUP improved Yo-Yo IR1 by a moderate margin compared to controls, while all other effect magnitudes were trivial or small. In conclusion, neither weekly sprint training at 90 or 100% velocity, nor supervised sprint training enhanced soccer-specific physical performance in junior soccer players.  相似文献   
73.

Background

The AKT/mTORC1/S6K pathway is frequently overstimulated in breast cancer, constituting a promising therapeutic target. The benefit from mTOR inhibitors varies, likely as a consequence of tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms. The mTORC1 downstream effectors S6K1, S6K2, and 4EBP1 are amplified and overexpressed in breast cancer, associated with a poor outcome and divergent endocrine treatment benefit. S6K1 and S6K2 share high sequence homology, but evidence of partly distinct biological functions is emerging. The aim of this work was to explore possible different roles and treatment target potentials of S6K1 and S6K2 in breast cancer.

Materials and methods

Whole-genome expression profiles were compared for breast tumours expressing high levels of S6K1, S6K2 or 4EBP1, using public datasets, as well as after in vitro siRNA downregulation of S6K1 and/or S6K2 in ZR751 breast cancer cells. In silico homology modelling of the S6K2 kinase domain was used to evaluate its possible structural divergences to S6K1.

Results

Genome expression profiles were highly different in S6K1 and S6K2 high tumours, whereas S6K2 and 4EBP1 profiles showed significant overlaps, both correlated to genes involved in cell cycle progression, among these the master regulator E2F1. S6K2 and 4EBP1 were inversely associated with IGF1 levels, and their prognostic value was shown to be restricted to tumours positive for IGFR and/or HER2. In vitro, S6K1 and S6K2 silencing resulted in upregulation of genes in the mTORC1 and mTORC2 complexes. Isoform-specific silencing also showed distinct patterns, e.g. S6K2 downregulation lead to upregulation of several cell cycle associated genes. Structural analyses of the S6K2 kinase domain showed unique structure patterns, deviating from those of S6K1, facilitating the development of isoform-specific inhibitors. Our data support emerging proposals of distinct biological features of S6K1 and S6K2, suggesting their importance as separate oncogenes and clinical markers, where specific targeting in different breast cancer subtypes could facilitate further individualised therapies.  相似文献   
74.
The syntheses and SAR of new series of β-amyloid binding agents are reported. The effort to optimize signal-to-background ratios for these ligands are described. Compounds 8, 21 and 30 displayed desirable lipophilicity and pharmacokinetic properties. Compounds 8 and 21 were evaluated with in vitro autoradiographic studies and in vivo in APP/PS1 transgenic mice. It is shown that it was possible to increase the signal-to-background ratios compared to PIB 1, as demonstrated by compounds 8 and 21.  相似文献   
75.

Background  

The ability of a gene to cause a disease is known to be associated with the topological position of its protein product in the molecular interaction network. Pleiotropy, in human genetic diseases, refers to the ability of different mutations within the same gene to cause different pathological effects. Here, we hypothesized that the ability of human disease genes to cause pleiotropic effects would be associated with their network properties.  相似文献   
76.
Macrophage inhibitory cytokine‐1 (MIC‐1/GDF15) is a member of the TGF‐b superfamily, previously studied in cancer and inflammation. In addition to regulating body weight, MIC‐1/GDF15 may be used to predict mortality and/or disease course in cancer, cardiovascular disease (CVD), chronic renal and heart failure, as well as pulmonary embolism. These data suggested that MIC‐1/GDF15 may be a marker of all‐cause mortality. To determine whether serum MIC‐1/GDF15 estimation is a predictor of all‐cause mortality, we examined a cohort of 876 male subjects aged 35–80 years, selected from the Swedish Population Registry, and followed them for overall mortality. Serum MIC‐1/GDF15 levels were determined for all subjects from samples taken at study entry. A second (independent) cohort of 324 same‐sex twins (69% female) from the Swedish Twin Registry was similarly examined. All the twins had telomere length measured and 183 had serum levels of interleukin 6 (IL‐6) and C‐reactive protein (CRP) available. Patients were followed for up to 14 years and had cause‐specific and all‐cause mortality determined. Serum MIC‐1/GDF15 levels predicted mortality in the all‐male cohort with an adjusted odds ratio (OR) of death of 3.38 (95%CI 1.38–8.26). This finding was validated in the twin cohort. Serum MIC‐1/GDF15 remained an independent predictor of mortality when further adjusted for telomere length, IL‐6 and CRP. Additionally, serum MIC‐1/GDF15 levels were directly correlated with survival time independently of genetic background. Serum MIC‐1/GDF15 is a novel predictor of all‐cause mortality.  相似文献   
77.
This article describes a stock-based methodology designed to analyze the redistribution of substance stocks to environmental compartments. The methodology is then applied to investigate the requirements and possibilities for avoiding undesired future accumulation of cadmium in Swedish arable soils. A prospective decomposition analysis of human cadmium mobilization is thus performed to estimate the potential amounts that can end up in arable soils through different flows from the cadmium stocks identified. The requirements for cadmium abatement to achieve prescribed goals for accumulation limits are determined and compared with past and current achievements and with the varying qualities of possible abatement methods.
A stock-based methodology adds some important information to traditional scenario techniques based on substance flow analysis. The most obvious is that the fact that stocks are limited actually matters for long-term accumulation of cadmium in arable land. The methodology may also contribute certain indicators, for instance, on abatement requirements, which could serve as a complement to regulation and local quality measures on specific flows at an aggregated policy level. The stock perspective also sheds new light on actions such as increased recycling.
Concerning the specific example used in the study, it is possible to achieve a future addition of cadmium in Swedish agricultural soils that is significantly lower than in the past, although the amount depends to a large degree on activities and policies outside Sweden. Considerable uncertainty exists regarding future depositions from air, especially that from distributed small-scale emissions from fuel burning and reemission of already deposited cadmium from natural media. Measures must also be taken to guarantee a continued low addition in the form of mineral phosphorus fertilizers.  相似文献   
78.
Accumulation of repair proteins on damaged chromosomes is required to restore genomic integrity. However, the mechanisms of protein retention at the most destructive chromosomal lesions, the DNA double-strand breaks (DSBs), are poorly understood. We show that RNF8, a RING-finger ubiquitin ligase, rapidly assembles at DSBs via interaction of its FHA domain with the phosphorylated adaptor protein MDC1. This is accompanied by an increase in DSB-associated ubiquitylations and followed by accumulation of 53BP1 and BRCA1 repair proteins. Knockdown of RNF8 or disruption of its FHA or RING domains impaired DSB-associated ubiquitylation and inhibited retention of 53BP1 and BRCA1 at the DSB sites. In addition, we show that RNF8 can ubiquitylate histone H2A and H2AX, and that its depletion sensitizes cells to ionizing radiation. These data suggest that MDC1-mediated and RNF8-executed histone ubiquitylation protects genome integrity by licensing the DSB-flanking chromatin to concentrate repair factors near the DNA lesions.  相似文献   
79.
We model a sexually transmitted infection in a network population where individuals have different numbers of partners, separated into steady and casual partnerships, where the risk of transmission is higher in steady partnerships. An individual's number of partners of the two types defines its degree, and the degrees in the community specify the degree distribution. For this structured network population a simple model for disease transmission is defined and the basic reproduction number R0 is derived, R0 being a size-biased (i.e. biasing individuals with many partners) average number of new infections caused by individuals during the early stages of the epidemic. First a homosexual population is considered and then a heterosexual population. The heterosexual model is fitted to data from a census survey on sexual activity from the Swedish island of Gotland. The main empirical finding is that, for relevant transmission rates, the effect that so-called superspreaders have on R0 is over-estimated when not admitting for different types of partnerships.  相似文献   
80.
The yeast endoplasmic reticulum (ER) membrane-localized chaperone Shr3 plays a critical role in enabling amino acid permeases (AAPs) to fold and attain proper structures required for functional expression at the plasma membrane. In the absence of Shr3, AAPs specifically accumulate in the ER, where despite the correct insertion of their 12 transmembrane segments (TMSs), they aggregate forming large molecular weight complexes. We show that Shr3 prevents aggregation and facilitates the functional assembly of independently coexpressed N- and C-terminal fragments of the general AAP Gap1. Shr3 interacts with and maintains the first five TMSs in a conformation that can posttranslationally assemble with the remaining seven TMSs. We also show that Doa10- and Hrd1-dependent ER-associated degradation (ERAD) pathways redundantly degrade AAP aggregates. In combination, doa10Delta hrd1Delta mutations stabilize AAP aggregates and partially suppress amino acid uptake defects of shr3 mutants. Consequently, in cells with impaired ERAD, AAPs are able to attain functional conformations independent of Shr3. These findings illustrate that folding and degradation are tightly coupled processes during membrane protein biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号