首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1168篇
  免费   84篇
  1252篇
  2023年   3篇
  2022年   11篇
  2021年   21篇
  2020年   9篇
  2019年   16篇
  2018年   15篇
  2017年   15篇
  2016年   40篇
  2015年   61篇
  2014年   67篇
  2013年   64篇
  2012年   115篇
  2011年   97篇
  2010年   62篇
  2009年   59篇
  2008年   79篇
  2007年   73篇
  2006年   46篇
  2005年   81篇
  2004年   68篇
  2003年   58篇
  2002年   59篇
  2001年   17篇
  2000年   6篇
  1999年   14篇
  1998年   19篇
  1997年   8篇
  1996年   5篇
  1995年   9篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1965年   1篇
  1962年   2篇
  1936年   1篇
排序方式: 共有1252条查询结果,搜索用时 0 毫秒
91.
Accumulation of repair proteins on damaged chromosomes is required to restore genomic integrity. However, the mechanisms of protein retention at the most destructive chromosomal lesions, the DNA double-strand breaks (DSBs), are poorly understood. We show that RNF8, a RING-finger ubiquitin ligase, rapidly assembles at DSBs via interaction of its FHA domain with the phosphorylated adaptor protein MDC1. This is accompanied by an increase in DSB-associated ubiquitylations and followed by accumulation of 53BP1 and BRCA1 repair proteins. Knockdown of RNF8 or disruption of its FHA or RING domains impaired DSB-associated ubiquitylation and inhibited retention of 53BP1 and BRCA1 at the DSB sites. In addition, we show that RNF8 can ubiquitylate histone H2A and H2AX, and that its depletion sensitizes cells to ionizing radiation. These data suggest that MDC1-mediated and RNF8-executed histone ubiquitylation protects genome integrity by licensing the DSB-flanking chromatin to concentrate repair factors near the DNA lesions.  相似文献   
92.
We model a sexually transmitted infection in a network population where individuals have different numbers of partners, separated into steady and casual partnerships, where the risk of transmission is higher in steady partnerships. An individual's number of partners of the two types defines its degree, and the degrees in the community specify the degree distribution. For this structured network population a simple model for disease transmission is defined and the basic reproduction number R0 is derived, R0 being a size-biased (i.e. biasing individuals with many partners) average number of new infections caused by individuals during the early stages of the epidemic. First a homosexual population is considered and then a heterosexual population. The heterosexual model is fitted to data from a census survey on sexual activity from the Swedish island of Gotland. The main empirical finding is that, for relevant transmission rates, the effect that so-called superspreaders have on R0 is over-estimated when not admitting for different types of partnerships.  相似文献   
93.
The yeast endoplasmic reticulum (ER) membrane-localized chaperone Shr3 plays a critical role in enabling amino acid permeases (AAPs) to fold and attain proper structures required for functional expression at the plasma membrane. In the absence of Shr3, AAPs specifically accumulate in the ER, where despite the correct insertion of their 12 transmembrane segments (TMSs), they aggregate forming large molecular weight complexes. We show that Shr3 prevents aggregation and facilitates the functional assembly of independently coexpressed N- and C-terminal fragments of the general AAP Gap1. Shr3 interacts with and maintains the first five TMSs in a conformation that can posttranslationally assemble with the remaining seven TMSs. We also show that Doa10- and Hrd1-dependent ER-associated degradation (ERAD) pathways redundantly degrade AAP aggregates. In combination, doa10Delta hrd1Delta mutations stabilize AAP aggregates and partially suppress amino acid uptake defects of shr3 mutants. Consequently, in cells with impaired ERAD, AAPs are able to attain functional conformations independent of Shr3. These findings illustrate that folding and degradation are tightly coupled processes during membrane protein biogenesis.  相似文献   
94.
Small RNAs play crucial roles in regulation of gene expression in many eukaryotes. Here, we report the cloning and characterization of 18–26 nt RNAs in the social amoeba Dictyostelium discoideum. This survey uncovered developmentally regulated microRNA candidates whose biogenesis, at least in one case, is dependent on a Dicer homolog, DrnB. Furthermore, we identified a large number of 21 nt RNAs originating from the DIRS-1 retrotransposon, clusters of which have been suggested to constitute centromeres. Small RNAs from another retrotransposon, Skipper, were significantly up-regulated in strains depleted of the second Dicer-like protein, DrnA, and a putative RNA-dependent RNA polymerase, RrpC. In contrast, the expression of DIRS-1 small RNAs was not altered in any of the analyzed strains. This suggests the presence of multiple RNAi pathways in D. discoideum. In addition, we isolated several small RNAs with antisense complementarity to mRNAs. Three of these mRNAs are developmentally regulated. Interestingly, all three corresponding genes express longer antisense RNAs from which the small RNAs may originate. In at least one case, the longer antisense RNA is complementary to the spliced but not the unspliced pre-mRNA, indicating synthesis by an RNA-dependent RNA polymerase.  相似文献   
95.
Within cancer research, phage display libraries have been widely used for the identification of tumor targeting peptides and antibodies. Additionally, phages are known to be highly immunogenic; therefore we evaluated the immunotherapeutic potential of tumor specific phages to treat established solid tumors in a mouse model of melanoma. We developed two tumor specific phages, one derived from a peptide phage display library and one Fab expressing phage with known specificity, for the treatment of mice bearing palpable B16-F10 or B16/A2Kb tumors. Therapy in B16-F10 tumor bearing mice with tumor specific phages was superior to treatment with non-tumor specific phages and lead to delayed tumor growth and increased survival. In B16/A2Kb tumor bearing mice, therapy with tumor specific phages resulted in complete tumor regression and long-term survival in 50% of the mice. Histological analysis of tumors undergoing treatment with tumor specific phages revealed that phage administration induced a massive infiltration of polymorphonuclear neutrophils. Furthermore, phages induced secretion of IL-12 (p70) and IFN-γ as measured in mouse splenocyte culture supernatants. These results demonstrate a novel, immunotherapeutic cancer treatment showing that tumor specific phages can promote regression of established tumors by recruitment of inflammatory cells and induction of Th1 cytokines.  相似文献   
96.
Asymmetric (N(G),N(G))-dimethylarginine (ADMA) inhibits nitric oxide (NO) synthases (NOS). ADMA is a risk factor for endothelial dysfunction, cardiovascular mortality, and progression of chronic kidney disease. Two isoforms of dimethylarginine dimethylaminohydrolase (DDAH) metabolize ADMA. DDAH-1 is the predominant isoform in the proximal tubules of the kidney and in the liver. These organs extract ADMA from the circulation. DDAH-2 is the predominant isoform in the vasculature, where it is found in endothelial cells adjacent to the cell membrane and in intracellular vesicles and in vascular smooth muscle cells among the myofibrils and the nuclear envelope. In vivo gene silencing of DDAH-1 in the rat and DDAH +/- mice both have increased circulating ADMA, whereas gene silencing of DDAH-2 reduces vascular NO generation and endothelium-derived relaxation factor responses. DDAH-2 also is expressed in the kidney in the macula densa and distal nephron. Angiotensin type 1 receptor activation in kidneys reduces the expression of DDAH-1 but increases the expression of DDAH-2. This rapidly evolving evidence of isoform-specific distribution and regulation of DDAH expression in the kidney and blood vessels provides potential mechanisms for nephron site-specific regulation of NO production. In this review, the recent advances in the regulation and function of DDAH enzymes, their roles in the regulation of NO generation, and their possible contribution to endothelial dysfunction in patients with cardiovascular and kidney diseases are discussed.  相似文献   
97.
Potent tetrapeptidic inhibitors of the HCV NS3 protease have been developed incorporating 4-hydroxy-cyclopent-2-ene-1,2-dicarboxylic acid as a new N-acyl-l-hydroxyproline mimic. The hydroxycyclopentene template was synthesized in eight steps from commercially available (syn)-tetrahydrophthalic anhydride. Three different amino acids were explored in the P1-position and in the P2-position the hydroxyl group of the cyclopentene template was substituted with 7-methoxy-2-phenyl-quinolin-4-ol. The P3/P4-positions were then optimized from a set of six amino acid derivatives. All inhibitors were evaluated in an in vitro assay using the full-length NS3 protease. Several potent inhibitors were identified, the most promising exhibiting a K(i) value of 1.1nM.  相似文献   
98.
99.
RFP2, a gene frequently lost in various malignancies, encodes a protein with RING finger, B-box, and coiled-coil domains that belongs to the RBCC/TRIM family of proteins. Here we demonstrate that Rfp2 is an unstable protein with auto-polyubiquitination activity in vivo and in vitro, implying that Rfp2 acts as a RING E3 ubiquitin ligase. Consequently, Rfp2 ubiquitin ligase activity is dependent on an intact RING domain, as RING deficient mutants fail to drive polyubiquitination in vitro and are stabilized in vivo. Immunopurification and tandem mass spectrometry enabled the identification of several putative Rfp2 interacting proteins localized to the endoplasmic reticulum (ER), including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). Importantly, we also show that Rfp2 regulates the degradation of the known ER proteolytic substrate CD3-delta, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein), establishing Rfp2 as a novel E3 ligase involved in ERAD. Finally, we show that Rfp2 contains a C-terminal transmembrane domain indispensable for its localization to the ER and that Rfp2 colocalizes with several ER-resident proteins as analyzed by high-resolution immunostaining. In summary, these data are all consistent with a function for Rfp2 as an ERAD E3 ubiquitin ligase.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号