首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  免费   80篇
  2023年   5篇
  2022年   16篇
  2021年   24篇
  2020年   16篇
  2019年   16篇
  2018年   31篇
  2017年   19篇
  2016年   24篇
  2015年   53篇
  2014年   56篇
  2013年   58篇
  2012年   72篇
  2011年   62篇
  2010年   54篇
  2009年   29篇
  2008年   38篇
  2007年   45篇
  2006年   30篇
  2005年   29篇
  2004年   34篇
  2003年   27篇
  2002年   20篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1961年   1篇
  1960年   1篇
  1954年   1篇
  1935年   1篇
  1931年   1篇
排序方式: 共有843条查询结果,搜索用时 15 毫秒
41.
Poly (ethylene glycol) (PEG) in the external environment of membrane vesicles creates osmotic imbalance that leads to mechanical stress in membranes and may induce local membrane curvature. To determine the relative importance of membrane stress and curvature in promoting fusion, we monitored contents mixing (CM) and lipid mixing (LM) between different sized vesicles under a variety of osmotic conditions. CM between highly curved vesicles (SUV, 26 nm diameter) was up to 10 times greater than between less curved vesicles (LUV, 120 nm diameter) after 5 min incubation at a low PEG concentration (<10 wt%), whereas LM was only approximately 30% higher. Cryo-electron microscopy showed that PEG at 10 wt% did not create high curvature contacts between membranes in LUV aggregates. A negative osmotic gradient (-300 mOs/kg, hypotonic inside) increased CM two- to threefold for both types of vesicles, but did not affect LM. A positive gradient (+220 mOs/kg, hypertonic inside) nearly eliminated CM and had no effect on LM. Hexadecane added to vesicles had no effect on LM but enhanced CM and reduced the inhibitory effect on CM of a positive osmotic gradient, but had little influence on results obtained under a negative osmotic gradient. We conclude that the ability of closely juxtaposed bilayers to form an initial intermediate ("stalk") as soon as they come into close contact was not influenced by osmotic stress or membrane curvature, although pore formation was critically dependent on these stresses. The results also suggest that hexadecane affects the same part of the fusion process as osmotic stress. We interpret this result to suggest that both a negative osmotic gradient and hexadecane reduce the unfavorable free energy of hydrophobic interstices associated with the intermediates of the fusion process.  相似文献   
42.
Total DNA of Plasmopara halstedii isolates from Germany was analysed for polymorphisms potentially useful for the differentiation of field isolates with respect to epidemiological studies or pathotype characterization. The isolation of the DNA started from mitotically formed zoosporangia, which is the only cellular structure of the biotrophic pathogen accessible independently from its host. The total DNA of the pathogen was used to perform DNA fingerprints with minisatellite and simple-sequence repeat primers. Polymorphisms were found that allowed differentiation on the level of single field isolates; however, they were not correlated with either physiological races or the geographic origin of the isolates. Using such differentiating primers, single spore strains of three pathogen isolates were also analysed with respect to genetic homogeneity. Minor variation was visible in the mitotically derived offspring, but the overall appearance of these patterns was mostly uniform with those of the respective parental isolate.  相似文献   
43.
During a study of ureolytic microbial calcium carbonate (CaCO(3)) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO(3) crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected. Sequencing of 16S rRNA genes showed that all of the isolates were phylogenetically closely related to the Bacillus sphaericus group. Urease gene diversity among the isolates was examined by using a novel application of PCR-denaturing gradient gel electrophoresis (DGGE). This approach revealed significant differences between the isolates. Moreover, for several isolates, multiple bands appeared on the DGGE gels, suggesting the apparent presence of different urease genes in these isolates. The substrate affinities (K(m)) and maximum hydrolysis rates (V(max)) of crude enzyme extracts differed considerably for the different strains. For certain isolates, the urease activity increased up to 10-fold in the presence of 30 mM calcium, and apparently this contributed to the characteristic crystal formation by these isolates. We show that strain-specific calcification occurred during ureolytic microbial carbonate precipitation. The specificity was mainly due to differences in urease expression and the response to calcium.  相似文献   
44.
Pigmentation pattern formation in butterflies: experiments and models   总被引:2,自引:0,他引:2  
Butterfly pigmentation patterns are one of the most spectacular and vivid examples of pattern formation in biology. They have attracted much attention from experimentalists and theoreticians, who have tried to understand the underlying genetic, chemical and physical processes that lead to patterning. In this paper, we present a brief review of this field by first considering the generation of the localised, eyespot, patterns and then the formation of more globally controlled patterns. We present some new results applied to pattern formation on the wing of the mimetic butterfly Papilio dardanus.  相似文献   
45.
Development and evolution of adaptive polyphenisms   总被引:5,自引:0,他引:5  
Phenotypic plasticity is the primitive character state for most if not all traits. Insofar as developmental and physiological processes obey the laws of chemistry and physics, they will be sensitive to such environmental variables as temperature, nutrient supply, ionic environment, and the availability of various macro- and micronutrients. Depending on the effect this phenotypic plasticity has on fitness, evolution may proceed to select either for mechanisms that buffer or canalize the phenotype against relevant environmental variation or for a modified plastic response in which some ranges of the phenotypic variation are adaptive to particular environments. Phenotypic plasticity can be continuous, in which case it is called a reaction norm, or discontinuous, in which case it is called a polyphenism. Although the morphological discontinuity of some polyphenisms is produced by discrete developmental switches, most polyphenisms are due to discontinuities in the environment that induce only portions of what is in reality a continuous reaction norm. In insect polyphenisms, the environmental variable that induces the alternative phenotype is a token stimulus that serves as a predictor of, but is not itself, the environment to which the polyphenism is an adaptation. In all cases studied so far, the environmental stimulus alters the endocrine mechanism of metamorphosis by altering either the pattern of hormone secretion or the pattern of hormone sensitivity in different tissues. Such changes in the patterns of endocrine interactions result in the execution of alternative developmental pathways. The spatial and temporal compartmentalization of endocrine interactions has produced a developmental mechanism that enables substantial localized changes in morphology that remain well integrated into the structure and function of the organism.  相似文献   
46.
47.
This article addresses biochar from a legal point of view. It analyses different policies and regulations from a European (Flemish) point of view and provides a first and general insight in what potential legal constraints the development of a biochar industry might face and what opportunities lie ahead. This is due to the fact that biochar is a recent product and a lot of scientific uncertainty still exists regarding the consequences of its application. From the analysis it appears a multitude of policies and legislative measures influence the development of the biochar industry. Hence, it is important that all these policies and legislative measures are analyzed in an appropriate manner. Moreover, considerable lobbying, negotiating and cooperation between different disciplines (legal, scientific, economical, etc.) will be required so as to develop a feasible and safe biochar framework.  相似文献   
48.
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).  相似文献   
49.
We have analyzed the impact of surface-to-volume ratio on final bacterial concentrations after batch growth. We examined six bottle sizes (20 to 1,000 ml) using three independent enumeration methods to quantify growth. We found no evidence of a so-called volumetric bottle effect, thus contradicting numerous previous reports.Microbial batch growth during confined incubation in bottles of various sizes is used daily in a broad variety of microbiological studies and methods, including bioassays such as the assimilable organic carbon (AOC) assay (6, 10, 18) and the analysis of pure culture or microbial community growth in freshwater (3, 11, 19, 20). In this context, “bottle effect” or “volume effect” is a term that has cropped up frequently in aquatic microbiology papers (e.g., references 12, 13, and 21) during the last 100 years to explain inexplicable phenomena and variations in results obtained from such batch growth studies. The uncertainty surrounding this apparent effect was clearly summarized in a recent paper by Pernthaler and Amann (16): “Such investigations are often plagued by the mysterious ‘bottle effect’, a hard-to-define concept that reflects the worry of whether phenomena observed in confined assemblages are nonspecific consequences of the confinement rather than a result of the planned manipulation.” The “bottle effect” alludes to an apparent reaction of bacteria to batchwise incubation in a confined environment, and this concept has intermittently been linked to influences on final cell concentrations (3) and grazing/bacterivory (13), a change in viability/activity parameters (9), a change in cultivability (5), and a change in population composition (1).The fact that microbiological processes during confined incubation differ from those in the environment is indisputable. However, a particular section of “bottle effect” literature focuses specifically on a volumetric “bottle effect”, where the above-mentioned effects are linked specifically to the size (or surface-to-volume ratio) of the incubation vessel (3, 8, 11-13, 15, 21). One of the oldest and best-known studies summarized clearly: “It will be observed that the densest bacterial populations appear in the bottles of water which offer the largest area of glass surface per unit volume of water” (21). This idea has established itself as dogma during the last century, with only a few differing opinions (4). However, precious little empirical data that actually quantify and explain the volumetric “bottle effect” are ever presented. In one example, Bischofberger et al. (3) observed that incubation of groundwater led to significantly more growth (about 2 log units) in small bottles (100 ml) than in big ones (10 liters). More often, however, the “bottle effect” is merely mentioned, as if it is self-explanatory and indisputable (2, 11, 12). In the present study, we took a simple but detailed look at the effect of bottle size on the outcome of short-term (<5-day) batch growth assays and compared the data critically to information in the literature and current opinion on this topic.Three batch growth experiments were conducted to assess the volumetric bottle effect on final cell concentrations after growth into stationary phase. Six different bottle sizes were used, covering the ranges most often reported in “bottle effect” literature. All glassware and Teflon-coated caps were cleaned comprehensively as described elsewhere (6) to remove any traces of organic carbon that might have been present on surfaces. The bottle sizes were as follows (water volumes and surface area-to-volume ratios [square centimeters to milliliters] are respectively included in parentheses): 1,000 ml (900 ml, 0.3:1), 500 ml (400 ml, 0.4:1), 250 ml (200 ml, 0.6:1), 100 ml (90 ml, 0.8:1), 40 ml (35 ml, 1.5:1), and 20 ml (15 ml, 2.4:1). In the first experiment, a sample of natural river water (dissolved organic carbon [DOC], 3.8 mg/liter; AOC, 0.3 mg/liter) from a small oligotrophic stream was obtained, filter sterilized with a 50-kDa dialysis filter (Fresenius Medical Care), and inoculated (at 103 cells/ml) with a microbial community used for AOC assays (19). In the second experiment, a sample of the effluent (DOC, 1.2 mg/liter; AOC, 0.03 mg/liter; total cell concentration [TCC], 3 × 105 cells/ml) from a granulated active carbon filter situated in a drinking water pilot plant (7) was collected and used directly for the experiment without additional treatment or inoculation. For the third experiment, sterile Luria-Bertani (LB) medium (diluted 1:10,000; DOC, 0.7 mg/liter; AOC, 0.46 mg/liter) was inoculated with Vibrio cholerae O1 (103 cells/ml) as described previously (19). The water from each experiment was distributed into triplicate flasks of each size and incubated (at 30°C) until stationary phase was reached. Stationary phase was indicated by no significant increase in the TCC (measured after 3, 4, and 5 days) on consecutive days. Samples from all experiments were analyzed (i) for TCCs after being stained with SYBR green I and subjected to flow cytometry (7, 19), (ii) for ATP by using a commercial luciferin-luciferase assay (Promega Corporation) (7), and (iii) for heterotrophic plate counts (HPC) on R2A agar by a pour plate method with incubation at 30°C for 10 days. Possible biofilm growth was checked by applying sonication to selected samples. However, no wall growth in bottles of any size was observed.Growth was observed in all three experiments. The results show the net growth after subtraction of the initial cell/ATP/HPC concentrations from the final concentrations (Fig. (Fig.1).1). The proposed concept of the volumetric bottle effect implies that more growth should occur in smaller bottles. All data sets were subjected to regression analysis, and we observed no significant correlation (P < 0.01) between bottle size and final growth in any of the experiments by any of the three independent methods used for quantification. Figure Figure1A1A shows the batch growth results for a natural microbial community in prefiltered river water. This experimental setup is reflective of a typical AOC assay (6) or batch cultivation of natural microbial communities (20). Figure Figure1B1B shows the results for direct incubation of a treated drinking water sample. This sample and experimental setup were chosen specifically to assess any potential volumetric “bottle effect” on an indigenous microbial community in a biologically stable water sample, where only limited growth is expected. Indeed, the final cell concentration in the sample was only about 25% higher than the original cell concentration. The cultivability (HPC/TCC × 100) at day 0 was 0.4%, and at the end of the experimental period it had increased to 2.5%. This points to increased cultivability as a result of growth during confinement (5), yet it does not relate at all to the size of the incubation vessel. Figure Figure1C1C shows the data for V. cholerae grown in sterile LB medium (diluted 1:10,000) to stationary phase. Again, this particular setup is of specific relevance since a recently published paper on the growth of V. cholerae referred directly to the volumetric “bottle effect” to explain rather large differences between growth results from two separate studies (11, 19). The data from Fig. Fig.1C1C suggest at least that a “bottle effect” should be ruled out as an interfering factor in this case.Open in a separate windowFIG. 1.Effects of bottle size on bacterial batch growth of a natural microbial community in filter-sterilized surface water (A), growth of bacteria during direct incubation of water from a drinking water treatment plant (B), and batch growth of a V. cholerae pure culture in diluted LB medium (C). Growth (expressed as the net growth) was quantified by flow cytometric total cell counting (circles), total ATP analysis (diamonds), and conventional plating (squares). All data points represent averages of triplicate measurements.The results presented in this study clearly dispute the concept of a volumetric “bottle effect” on the outcome of short-term batch growth assays, be it for pure cultures or natural microbial communities. These findings contradict evidence reported by many other researchers (3, 8, 11-13, 15, 21). Although the volumetric “bottle effect” is often cited as a somewhat mysterious occurrence, it is imperative that clear experimental data are required for the critical appraisal thereof. The main experimental theory behind the phenomenon is that organic carbon adsorbs to clean glass surfaces, thus locally concentrating the carbon and creating more favorable growth conditions (2, 14). This adsorption and the fact that bacteria can utilize such adsorbed carbon have been demonstrated experimentally (14). What has, in our opinion, not been shown conclusively is that these effects can be so dramatic that they would alter the growth of samples to the extent that different sizes of bottles would render different final cell numbers after growth. Since we have not observed any volumetric “bottle effect” in our work, we can only speculate on the possible reasons why this has been observed previously. One explanation may be that glassware contaminated with organic carbon can contribute to the perception of a volumetric “bottle effect,” as large surface-to-volume ratios (found in small bottles) would account for increased contamination compared to that in bottles with smaller ratios. Hence, more additional available carbon would be introduced into smaller bottles, giving rise to higher final cell numbers after growth. In this context, it is essential that a comprehensive glassware-cleaning protocol be followed, including heating to a high temperature (>500°C) and storage away from volatile organics (6). In addition, it is important that such experiments at low carbon concentrations are complemented with the inclusion of correct and sensitive controls to assess potential organic carbon contamination. For example, the use of deionized water as a negative control should be avoided, since the absence of inorganic nutrients is bound to lead to no growth and thus false-negative results (10). A good negative control would be water that is only carbon limited, e.g., bottled drinking water (17). Moreover, the use of multiple tools for analyzing growth, including cultivation-independent methods, is encouraged.In conclusion, we did not observe evidence of a volumetric bottle effect on short-term (<5-day) batch incubations. The findings of this study suggest that reference to the so-called volumetric bottle effect should be considered carefully unless supported by clear experimental data. This study does not dispute the fact that many authors have observed results implying apparent bottle effects during growth studies, but it questions the interpretation and understanding of this concept and the random use of the term “bottle effect” to explain uncertainty in results, specifically in relation to bottle size. Hopefully, these data will assist with experimental setups and comparison of data among different groups and stimulate discussion of and future research on this interesting, but slightly controversial, topic.  相似文献   
50.
Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号