首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3874篇
  免费   451篇
  国内免费   5篇
  4330篇
  2021年   31篇
  2020年   23篇
  2019年   32篇
  2018年   37篇
  2017年   41篇
  2016年   50篇
  2015年   125篇
  2014年   96篇
  2013年   152篇
  2012年   228篇
  2011年   213篇
  2010年   126篇
  2009年   124篇
  2008年   143篇
  2007年   159篇
  2006年   200篇
  2005年   156篇
  2004年   193篇
  2003年   158篇
  2002年   151篇
  2001年   45篇
  2000年   35篇
  1999年   40篇
  1998年   66篇
  1997年   48篇
  1996年   44篇
  1995年   39篇
  1994年   42篇
  1993年   26篇
  1992年   36篇
  1991年   36篇
  1990年   41篇
  1989年   36篇
  1988年   36篇
  1987年   27篇
  1986年   34篇
  1985年   30篇
  1984年   48篇
  1983年   33篇
  1982年   62篇
  1981年   50篇
  1980年   49篇
  1979年   39篇
  1978年   25篇
  1977年   50篇
  1976年   46篇
  1975年   41篇
  1974年   40篇
  1973年   27篇
  1970年   23篇
排序方式: 共有4330条查询结果,搜索用时 15 毫秒
991.
Maltose-binding protein (MBP or MalE) of Escherichia coli is the periplasmic receptor of the maltose transport system. MalE31, a defective folding mutant of MalE carrying sequence changes Gly 32-->Asp and Ile 33-->Pro, is either degraded or forms inclusion bodies following its export to the periplasmic compartment. We have shown previously that overexpression of FkpA, a heat-shock periplasmic peptidyl-prolyl isomerase with chaperone activity, suppresses MalE31 misfolding. Here, we have exploited this property to characterize the maltose transport activity of MalE31 in whole cells. MalE31 displays defective transport behavior, even though it retains maltose-binding activity comparable with that of the wild-type protein. Because the mutated residues are in a region on the surface of MalE not identified previously as important for maltose transport, we have solved the crystal structure of MalE31 in the maltose-bound state in order to characterize the effects of these changes. The structure was determined by molecular replacement methods and refined to 1.85 A resolution. The conformation of MalE31 closely resembles that of wild-type MalE, with very small displacements of the mutated residues located in the loop connecting the first alpha-helix to the first beta-strand. The structural and functional characterization provides experimental evidence that MalE31 can attain a wild-type folded conformation, and suggest that the mutated sites are probably involved in the interactions with the membrane components of the maltose transport system.  相似文献   
992.
1. Tamm-Horsfall glycoprotein was isolated from hamster urine and antiserum against it was produced in rabbits. Immunoglobulin G was isolated from the antiserum. 2. Indirect methods of immunofluorescence staining were applied to kidney sections previously fixed by both perfusion and immersion methods. Tamm-Horsfall glycoprotein was identified associated with only the cells of the ascending limb of the loop of Henle and the distal convoluted tubule. Maculae densae were free of the glycoprotein. 3. Indirect immunoperoxidase procedures with light microscopy were applied to kidney sections. The results extended those found by immunofluorescence by showing that the glycoprotein is largely associated with the plasma membrane of the cells. Macula densa cells were shown to be free of the glycoprotein, although the luminal surface of the remaining cells in the transverse section of the nephron at that region was shown to contain it. 4. A variety of immuno-electron-microscopic techniques were applied to sections previously fixed in a number of ways. Providing periodate/lysine/paraformaldehyde was used as the fixative, the glycoprotein was often seen to be present not only on the luminal surface of the cells of the thick ascending limb of the loop of Henle and of the distal convoluted tubule, but also on the basal plasma membrane, including the infoldings. 5. It is generally accepted that the hyperosmolarity in the medulla of the kidney results from passage of Cl(-) ions with their accompanying Na(+) ions across the single cell layer of the lumen of the thick ascending limb of the loop of Henle, a region of the nephron with relatively high impermeability to water. We suggest that Tamm-Horsfall glycoprotein operates as a barrier to decrease the passage of water molecules by trapping the latter at the membrane of the cells. Our hypothesis requires the glycoprotein on the basal plasma membrane also.  相似文献   
993.
The β2 integrins and intercellular adhesion molecule-1 (ICAM-1) are important for monocyte migration through inflammatory endothelium. Here we demonstrate that the integrin αvβ3 is also a key player in this process. In an in vitro transendothelial migration assay, monocytes lacking β3 integrins revealed weak migratory ability, whereas monocytes expressing β3 integrins engaged in stronger migration. This migration could be partially blocked by antibodies against the integrin chains αL, β2, αv, or IAP, a protein functionally associated with αvβ3 integrin. Transfection of β3 integrin chain cDNA into monocytes lacking β3 integrins resulted in expression of the αvβ3 integrin and conferred on these cells an enhanced ability to transmigrate through cell monolayers expressing ICAM-1. These monocytes also engaged in αLβ2-dependent locomotion on recombinant ICAM-1 which was enhanced by αvβ3 integrin occupancy. Antibodies against IAP were able to revert this αvβ3 integrin-dependent cell locomotion to control levels. Finally, adhesion assays revealed that occupancy of αvβ3 integrin could decrease monocyte binding to ICAM-1.In conclusion, we show that αvβ3 integrin modulates αLβ2 integrin-dependent monocyte adhesion to and migration on ICAM-1. This could represent a novel mechanism to promote monocyte motility on vascular ICAM-1 and initiate subsequent transendothelial migration.  相似文献   
994.
Short-chain aliphatic epoxides and ketones are two classes of toxic organic compounds formed biogenically and anthropogenically. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds (e.g., alkenes, alkanes, and secondary alcohols) by a number of diverse bacteria. One bacterium capable of using both classes of compounds is the gram-negative aerobe Xanthobacter strain Py2. Studies of epoxide and ketone (acetone) metabolism by Xanthobacter strain Py2 have revealed a central role for CO2 in these processes. Both classes of compounds are metabolized by carboxylation reactions that produce β-keto acids as products. The epoxide- and ketone-converting enzymes are distinct carboxylases with molecular properties and cofactor requirements unprecedented for other carboxylases. Epoxide carboxylase is a four-component multienzyme complex that requires NADPH and NAD+ as cofactors. In the course of epoxide carboxylation, a transhydrogenation reaction occurs wherein NADPH undergoes oxidation and NAD+ undergoes reduction. Acetone carboxylase is a multimeric (three-subunit) ATP-dependent enzyme that forms AMP and inorganic phosphate as ATP hydrolysis products in the course of acetone carboxylation. Recent studies have demonstrated that acetone metabolism in diverse anaerobic bacteria (sulfate reducers, denitrifiers, phototrophs, and fermenters) also proceeds by carboxylation reactions. ATP-dependent acetone carboxylase activity has been demonstrated in cell-free extracts of the anaerobic acetone-utilizers Rhodobacter capsulatus, Rhodomicrobium vannielii, and Thiosphaera pantotropha. These studies have identified new roles for CO2 as a cosubstrate in the metabolism of two classes of important xenobiotic compounds. In addition, two new classes of carboxylases have been identified, the investigation of which promises to reveal new insights into biological strategies for the fixation of CO2 to organic substrates. Received: 13 August 1997 / Accepted: 6 October 1997  相似文献   
995.
The human pathogen Shigella flexneri subverts host function and defenses by deploying a cohort of effector proteins via a type III secretion system. The IpaH family of 10 such effectors mimics ubiquitin ligases but bears no sequence or structural homology to their eukaryotic counterpoints. Using rates of 125I-polyubiquitin chain formation as a functional read out, IpaH9.8 displays V-type positive cooperativity with respect to varying concentrations of its Ubc5B∼125I-ubiquitin thioester co-substrate in the nanomolar range ([S]½ = 140 ± 32 nm; n = 1.8 ± 0.1) and cooperative substrate inhibition at micromolar concentrations ([S]½ = 740 ± 240 nm; n = 1.7 ± 0.2), requiring ordered binding to two functionally distinct sites per subunit. The isosteric substrate analog Ubc5BC85S-ubiquitin oxyester acts as a competitive inhibitor of wild-type Ubc5B∼125I-ubiquitin thioester (Ki = 117 ± 29 nm), whereas a Ubc5BC85A product analog shows noncompetitive inhibition (Ki = 2.2 ± 0.5 μm), consistent with the two-site model. Re-evaluation of a related IpaH3 crystal structure (PDB entry 3CVR) identifies a symmetric dimer consistent with the observed cooperativity. Genetic disruption of the predicted IpaH9.8 dimer interface reduces the solution molecular weight and significantly ablates the kcat but not [S]½ for polyubiquitin chain formation. Other studies demonstrate that cooperativity requires the N-terminal leucine-rich repeat-targeting domain and is transduced through Phe395. Additionally, these mechanistic features are conserved in a distantly related SspH2 Salmonella enterica ligase. Kinetic parallels between IpaH9.8 and the recently revised mechanism for E6AP/UBE3A (Ronchi, V. P., Klein, J. M., and Haas, A. L. (2013) E6AP/UBE3A ubiquitin ligase harbors two E2∼ubiquitin binding sites. J. Biol. Chem. 288, 10349–10360) suggest convergent evolution of the catalytic mechanisms for prokaryotic and eukaryotic ligases.  相似文献   
996.
The class I -1,3-glucanases are antifungal vacuolar proteins implicated in plant defense that show developmental, hormonal, and pathogenesis-related regulation. The tobacco enzymes are encoded by a small gene family with members derived from ancestors related to the present-day species Nicotiana sylvestris and N. tomentosiformis. We studied the expression in transgenic tobacco plants of a chimeric -glucuronidase (GUS) reporter gene fused to 1.6 kb of upstream sequence of the tobacco class I -1,3-glucanase B (GLB) gene, which is of N. tomentosiformis origin. Expression of the GUS reporter gene and the accumulation of class I -1,3-glucanase and its mRNA showed very similar patterns of regulation. In young seedlings the reporter gene was expressed in the roots. In mature tobacco plants it was preferentially expressed in lower leaves and roots and was induced in leaves by ethylene treatment and by infection with tobacco mosaic virus (TMV). Furthermore, it was down-regulated in cultured leaf discs by combinations of the hormones auxin and cytokinin. Histological studies of GUS activity showed that the GLB promoter shows highly localized expression in roots of seedlings. It is also expressed in a ring of cells around necrotic lesions induced by TMV infection, but not in cells immediately adjacent to the lesions or in the lesions themselves. The results of deletion analyses suggest that multiple positive and negative elements in the GLB promoter regulate its activity. The region from –1452 to –1193 containing two copies of the heptanucleotide AGCCGCC, which is highly conserved in plant-stress and defense-related genes, is necessary for high level expression in leaves. Additional regions important for organ-specific and regulated expression were: –568 to –402 for ethylene induction of leaves; –402 to –211 for expression in lower leaves and cultured leaf discs and for TMV induction of leaves; and –211 to –60 for expression in roots.  相似文献   
997.
Two epimers of malyngamide C, 8-O-acetyl-8-epi-malyngamide C (1) and 8-epi-malyngamide C (3) have been isolated along with known compounds 6-O-acetylmalyngamide F (5), H (6), J (7) K (8), and characterized from a Grenada field collection of the marine cyanobacterium Lyngbya majuscula. The structures of these compounds were deduced by 1D and 2D NMR spectroscopic and mass spectral data interpretation. Absolute configurations were determined by a combination of CD-spectroscopy, chemical degradation and the variable temperature Mosher’s method. Compounds 15, 7 and 8 displayed moderate cytotoxicity to NCI-H460 human lung tumor and neuro-2a cancer cell lines, with IC50 values ranging between 0.5 and 20 μg/mL.  相似文献   
998.
The voltage-gated potassium channel, Kv1.3, is present in human T-lymphocytes. Blockade of Kv1.3 results in T-cell depolarization, inhibition of T-cell activation, and attenuation of immune responses in vivo. A class of benzamide Kv1.3 channel inhibitors has been identified. The structure-activity relationship within this class of compounds in two functional assays, Rb_Kv and T-cell proliferation, is presented. In in vitro assays, trans isomers display moderate selectivity for binding to Kv1.3 over other Kv1.x channels present in human brain.  相似文献   
999.
1000.
A suggested pioneer organism for the Wächtershäuser origin of life hypothesis is presented. In this scenario, a cubic pyrite crystal edge serves as a catalytic surface for the production of a proto-nucleic acid. Computational analysis demonstrates how the vacant cubic pyrite edge could be populated by iron(II) and hydrogen phosphate, capped with a distorted iron pentacarbonyl. A bridging iron sulfide then forms blocking one side of the edge. The carbonyl on the other side of the edge can then react with either existing uracil or cytosine, to produce a nitrogen-iron carbonyl intermediate. This intermediate serves as a free radical initiator for a polymerization of carbon monoxide and molecular hydrogen. After the fourth carbon is added to the chain, the polymerization is terminated by ring formation yielding a condensed ribose. The resultant product is a proto-nucleic acid, a pioneer organism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号