首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1522篇
  免费   145篇
  国内免费   2篇
  2023年   8篇
  2022年   10篇
  2021年   31篇
  2020年   14篇
  2019年   17篇
  2018年   24篇
  2017年   21篇
  2016年   36篇
  2015年   62篇
  2014年   72篇
  2013年   92篇
  2012年   115篇
  2011年   103篇
  2010年   65篇
  2009年   71篇
  2008年   103篇
  2007年   99篇
  2006年   81篇
  2005年   87篇
  2004年   70篇
  2003年   75篇
  2002年   84篇
  2001年   15篇
  2000年   10篇
  1999年   14篇
  1998年   17篇
  1997年   17篇
  1996年   8篇
  1995年   9篇
  1994年   6篇
  1993年   11篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   9篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   16篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   5篇
  1978年   5篇
  1974年   6篇
  1973年   5篇
  1966年   4篇
  1908年   5篇
  1889年   4篇
排序方式: 共有1669条查询结果,搜索用时 15 毫秒
961.

Background  

To discover prostate cancer biomarkers, we profiled gene expression in benign and malignant cells laser capture microdissected (LCM) from prostate tissues and metastatic prostatic adenocarcinomas. Here we present methods developed, optimized, and validated to obtain high quality gene expression data.  相似文献   
962.
963.
While aggregation‐prone proteins are known to accelerate aging and cause age‐related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG‐4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid‐promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG‐4 to neutralize charge. Our data indicate that MOAG‐4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation‐prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age‐related protein toxicity.  相似文献   
964.
To develop sources of renewable energy and to reduce greenhouse gas emissions, increasing attention has been given to the extraction of forest biomass, especially in the form of harvest residues. However, increasing the removal of biomass, and hence nutrients, has raised concerns about the sustainability of site fertility and forest productivity. The environmental cost of harvesting belowground biomass is still not fully understood. The objectives of this study were to (i) estimate the stocks of belowground biomass that potentially can be collected; (ii) measure the nutrient (N, P, K, Ca, Mg) concentrations of the different root compartments (stumps, coarse and thin roots); and to (iii) quantify the biomass and nutrient exports under different scenarios, including harvests of above and belowground compartments. The study was carried out on Pinus pinaster stands located in south‐western France. Results showed that roots could be a significant fuelwood resource, particularly at forest clear cutting. Negative relationships between root diameter and root nutrient concentration were observed, independently of root function or tree age. Such relationships can be used to accurately simulate nutrient concentrations in roots as well as nutrient exports. Combining our original results on roots with previously published data on the aboveground compartments showed that nutrient losses were higher in canopy harvest scenarios than in root harvest scenarios. This was mainly due to high nutrient concentrations of needles. We concluded that stump and root harvest could be sustainable in our study context, conversely to foliage harvest. Because thin roots have higher nutrient concentrations than coarse roots and the proportion of thin roots increased with an increase in the distance from the tree, collecting roots only in the close vicinity of the stumps should limit nutrient exports (particularly N) without unnecessarily reducing fuelwood biomass.  相似文献   
965.
966.
Suspensions of isolated parenchymal cells were prepared from rat liver by incubation with collagenase and hyaluronidase followed by mechanical treatment. Utilization of 0.15% collagenase together with 0.15% hyaluronidase yielded adequate numbers of cells for experimental purposes. As shown by light and electron microscopy, approximately 75% of the isolated cells retain their structural integrity. The cell suspensions are capable of maintaining endogenous respiration in the presence of 1% albumin for periods of time up to 8 hr. These cell preparations consist almost entirely of parenchymal cells and offer a unique tissue preparation for the study of hepatic metabolism.  相似文献   
967.
Interleukin (IL)-1beta maturation is accomplished by caspase-1-mediated proteolysis, an essential element of innate immunity. NLRs constitute a recently recognized family of caspase-1-activating proteins, which contain a nucleotide-binding oligomerization domain and leucine-rich repeat (LRR) domains and which assemble into multiprotein complexes to create caspase-1-activating platforms called "inflammasomes." Using purified recombinant proteins, we have reconstituted the NALP1 inflammasome and have characterized the requirements for inflammasome assembly and caspase-1 activation. Oligomerization of NALP1 and activation of caspase-1 occur via a two-step mechanism, requiring microbial product, muramyl-dipeptide, a component of peptidoglycan, followed by ribonucleoside triphosphates. Caspase-1 activation by NALP1 does not require but is enhanced by adaptor protein ASC. The findings provide the biochemical basis for understanding how inflammasome assembly and function are regulated, and shed light on NALP1 as a direct sensor of bacterial components in host defense against pathogens.  相似文献   
968.
969.
A genetic transformation method via secondary somatic embryogenesis was developed for alfalfa (Medicago sativa L.). Mature somatic embryos of alfalfa were infected by Agrobacterium strain GV3101 containing the binary vector pCAMBIA2301. pCAMBIA2301 harbors the uidA Gus reporter gene and npt II acts as the selectable marker gene. Infected primary embryos were placed on SH2K medium containing plant growth regulators to induce cell dedifferentiation and embryogenesis under 75 mg/L kanamycin selection. The induced calli were transferred to plant medium free of plant growth regulators for embryo formation while maintaining selection. Somatic embryos germinated normally upon transfer to a germination medium. Plants were recovered and grown in a tissue culture room before transfer to a greenhouse. Histochemical analysis showed high levels of GUS activity in secondary somatic embryos and in different organs of plants recovered from secondary somatic embryos. The presence and stable integration of transgenes in recovered plants were confirmed by polymerase chain reaction using transgene-specific primers and Southern blot hybridization using the npt II gene probe. The average transformation efficiency achieved via secondary somatic embryogenesis was 15.2%. The selection for transformation throughout the cell dedifferentiation and embryogenic callus induction phases was very effective, and no regenerated plants escaped the selection procedure. Alfalfa transformation is usually achieved through somatic embryogenesis using different organs of developed plants. Use of somatic embryos as explants for transformation can avoid the plant development phase, providing a faster procedure for introduction of new traits and facilitates further engineering of previously transformed lines.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号