首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1518篇
  免费   150篇
  国内免费   2篇
  1670篇
  2023年   9篇
  2022年   12篇
  2021年   33篇
  2020年   14篇
  2019年   17篇
  2018年   24篇
  2017年   22篇
  2016年   39篇
  2015年   64篇
  2014年   73篇
  2013年   93篇
  2012年   115篇
  2011年   107篇
  2010年   66篇
  2009年   73篇
  2008年   104篇
  2007年   99篇
  2006年   81篇
  2005年   89篇
  2004年   78篇
  2003年   75篇
  2002年   83篇
  2001年   13篇
  2000年   9篇
  1999年   12篇
  1998年   18篇
  1997年   16篇
  1996年   9篇
  1995年   10篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1990年   7篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   11篇
  1980年   6篇
  1978年   6篇
  1976年   4篇
  1974年   7篇
  1973年   4篇
  1971年   5篇
  1969年   4篇
  1966年   4篇
  1908年   5篇
  1889年   4篇
排序方式: 共有1670条查询结果,搜索用时 0 毫秒
971.
972.
Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1.  相似文献   
973.
We have developed a statistical mechanics algorithm, TANGO, to predict protein aggregation. TANGO is based on the physico-chemical principles of beta-sheet formation, extended by the assumption that the core regions of an aggregate are fully buried. Our algorithm accurately predicts the aggregation of a data set of 179 peptides compiled from the literature as well as of a new set of 71 peptides derived from human disease-related proteins, including prion protein, lysozyme and beta2-microglobulin. TANGO also correctly predicts pathogenic as well as protective mutations of the Alzheimer beta-peptide, human lysozyme and transthyretin, and discriminates between beta-sheet propensity and aggregation. Our results confirm the model of intermolecular beta-sheet formation as a widespread underlying mechanism of protein aggregation. Furthermore, the algorithm opens the door to a fully automated, sequence-based design strategy to improve the aggregation properties of proteins of scientific or industrial interest.  相似文献   
974.
A fraction containing neurotransmitter storage vesicles was isolated from rat whole brain and brain regions, and the uptakes of [3H]norepinephrine and [3H]serotonin were determined in vitro. Norepinephrine uptake in vesicle preparations from corpus striatum was higher than in prep arations from cerebral cortex, and uptake in vesicles from the remainder (midbrain + brainstem + cerebellum) was intermediate. The Km for norepinephrine uptake was the same in the three brain regions, but the regions differed in maximal uptake capacity by factors which paralleled total catecholamine concentration rather than content of norepinephrine alone. Intracisternal administration of 6-hydroxydopamine, but not of 5,6-dihydroxytryptamine, reduced vesicular norepinephrine uptake, and pretreat-ment with desmethylimipramine (which protects specifically norepinephrine neurons but not dopamine neurons from the 6-hydroxydopamine) only partially prevented the loss of vesicular norepinephrine uptake. These studies indicate that uptake of norepinephrine by rat brain vesicle preparations occurs in vesicles from norepinephrine and dopamine neurons, but probably not in vesicles from serotonin neurons. Uptake of serotonin by brain vesicle preparations exhibited time, temperature and ATP-Mg2+ requirements nearly identical to those of norepinephrine uptake. The affinity of serotonin uptake matched that of serotonin for inhibition of norepinephrine uptake, and the maximal capacity was the same for serotonin as for norepinephrine. Norepinephrine, dopamine and reserpine inhibited serotonin uptake in a purely competitive fashion, with Kis similar to those for inhibition of norepinephrine uptake. Whereas 5,6-dihydroxytryptamine treatment reduced synaptosomal serotonin uptake but not vesicular serotonin uptake, 6-hydroxydopamine reduced vesicular serotonin uptake in the absence of reductions in synaptosomal serotonin uptake. Thus, in this preparation, serotonin appears to be taken up in vitro into catecholamine vesicles, rather than into serotonin vesicles.  相似文献   
975.
976.
QST is a standardized measure of the genetic differentiation of a quantitative trait among populations. The distribution of QST''s for neutral traits can be predicted from the FST for neutral marker loci. To test for the neutral differentiation of a quantitative trait among populations, it is necessary to ask whether the QST of that trait is in the tail of the probability distribution of neutral traits. This neutral distribution can be estimated using the Lewontin–Krakauer distribution and the FST from a relatively small number of marker loci. We develop a simulation method to test whether the QST of a given trait is consistent with the null hypothesis of selective neutrality over space. The method is most powerful with small mean FST, strong selection, and a large number (>10) of measured populations. The power and type I error rate of the new method are far superior to the traditional method of comparing QST and FST.IN 1993, Spitze (1993) and Prout and Barker (1993) introduced QST, a quantitative genetic analog of Wright''s FST. Just as FST gives a standardized measure of the genetic differentiation among populations for a genetic locus, QST measures the amount of genetic variance among populations relative to the total genetic variance. In the years since, QST has been frequently used to test for the effects of spatially divergent (or less commonly, spatially uniform) selection (see reviews in Lynch et al. 1999; Merilä and Crnokrak 2001; McKay and Latta 2002; Howe et al. 2003; Leinonen et al. 2008; Whitlock 2008). In principle, the average QST of a neutral additive quantitative trait is expected to be equal to the mean value of FST for neutral genetic loci. FST can be readily measured on commonly available genetic markers, and QST can be measured as well with an appropriate breeding design in a common-garden setting. As a result, QST promises to be an index of the effect of selection on the quantitative trait. If QST is higher than FST, then this is taken as evidence of spatially divergent selection on the trait. If QST is much smaller than FST, then this has been taken as evidence of spatially uniform stabilizing selection, which makes the trait diverge less than expected by chance.The comparison with FST is essential to rule out genetic drift as an alternative mechanism for phenotypic divergence among populations. Because finite populations may diverge genetically in the absence of selection, divergence must be greater than expected by drift alone if we are to conclusively demonstrate that divergent selection has played a role in genetic differentiation among populations. Therefore it has become common practice to use FST of putatively neutral markers as a control for the effects of genetic drift and to compare observed QST values for traits to these neutral FST values.These comparisons follow two separate methods, to address related but distinct questions. First, many studies of quantitative genetic differentiation measure the QST of many traits and the FST of many loci, followed by a comparison of the mean QST to the mean FST. Such a comparison may judge whether the conditions are suitable in that species for local adaptation, that is, whether selective differences between populations are large enough relative to gene flow to allow adaptive differentiation (Whitlock 2008). We do not consider this sort of comparison in this article.The other type of comparison asks whether the QST of a single trait is greater than expected by drift, as measured by FST. This type of comparison is most common, but it is statistically difficult. Unfortunately, as emphasized in a recent review by Whitlock (2008), there is great variation in the expected FST among neutral loci and among the QST of different neutral traits (see Figure 1). The majority of this variation results from evolutionary differences between loci and not sampling error in the observations. Rogers and Harpending (1983) imply that the distribution of QST of a single neutral trait should be approximately equivalent to that for FST of a single neutral locus, and this has been confirmed by simulation for traits determined by additive loci compared to biallelic marker loci (Whitlock 2008). The two distributions are similar, but there is great heterogeneity among traits or loci. As a result, to show that selection is acting on a trait, it is necessary to show that the value of QST has a low probability of being observed given the distribution of neutral QST.Open in a separate windowFigure 1.—The distribution of FST for neutral loci and QST for neutral quantitative traits. The histograms show the results of simulations of a set of 10 local populations each of 100 individuals, connected by 5% migration following island model assumptions. The solid line shows the distribution predicted by the Lewontin–Krakauer distribution. The distribution of QST for neutral traits is very similar to the distribution of FST for single neutral loci, as can be seen by their mutual good fit to the Lewontin–Krakauer distribution (Figure modified from Whitlock 2008).Comparing QST to the distribution inferred from FST is difficult for two reasons. First, typical data sets rarely include enough loci to directly infer the distribution of FST without extra inferential steps. In our approach, we use the distribution of QST predicted from the mean FST and the χ2 distribution by Lewontin and Krakauer (1973) to bridge this gap. Whitlock (2008) has shown that this distribution is appropriate for nearly all realistic situations for traits determined by additive genetic effects. Second, QST for a trait is rarely measured with high precision, so the position of a given estimated QST value in the distribution cannot be known without error.To test the null hypothesis that the spatial distribution of a particular trait is not affected by selection, we wish to compare the observed of that trait (marked with a hat to indicate it is an estimate) to the distribution of QST expected for neutral traits. Unfortunately, calculating the distribution of QST for neutral traits is not straightforward, because the estimate of QST for a particular trait is variable for several reasons. The estimate of QST is subject to measurement error, caused by the finite samples of families and individuals in the quantitative genetic experiment. These cause error in the estimate of the additive genetic variance within populations (VA,within) and the genetic variance among populations (VG,among), which translate into error of the estimate of QST. In addition, there is another source of variation in QST among neutral traits, caused by the idiosyncrasies of the evolutionary process in each local population in the study. The true value of QST for the set of populations being studied can vary tremendously around its expectation, even for neutral traits, because by chance a finite set of populations may drift in a similar direction (Whitlock 2008). As a result, measurements of QST can vary because of both statistical and evolutionary variation.Fortunately, these two sources of variation are fairly well understood individually. The sampling error for the estimates of the variance components can be estimated from standard approaches, and this variation can be well approximated using information from the mean squares of the analysis of the breeding experiment (O''Hara and Merilä 2005). The variation in neutral QST that results from heterogeneity of evolutionary history can be approximated by the Lewontin–Krakauer distribution (Lewontin and Krakauer 1973), if information is available on the mean QST of neutral traits (Whitlock 2008). This approximation does not depend on the demographic details of the populations in question (Whitlock 2008), but the effects of deviations from assumptions of additive gene effect have not yet been tested. The mean of the distribution of values of QST for neutral traits is usually not known, but fortunately the mean of the distribution of FST of neutral loci is expected to be approximately equal to the mean QST of neutral traits (Spitze 1993), and this does not depend on demographic details (Whitlock 1999). Therefore the mean FST measured from a series of genetic markers thought to be selectively neutral can be combined with the Lewontin–Krakauer distribution to predict the distribution of true neutral QST across the range of possible evolutionary trajectories.Given that the mean value of of neutral traits is expected to equal the mean FST of neutral markers under certain assumptions (discussed later), we will use as a test statistic and compare the observed quantity to the zero value proposed by the null hypothesis. We will use a traditional hypothesis testing approach, which means that we need to specify the sampling distribution of under the assumption of neutrality. Traditionally, the sampling distribution of is inferred from the data on the trait itself, for example, using bootstrapping to infer the sampling distribution. This is appropriate when calculating a confidence interval for QST but is a biased measure of the sampling variance of neutral QST. The variance of the sampling distribution of varies with its expected value; larger values of true QST have more variable sampling distributions than traits with smaller true QST. This association between QST and its sampling error is quite strong, as shown in Figure 2. As a result, if the sampling properties of neutral are inferred from a trait with high QST, the estimate of the variance of the null distribution will be too high, and the hypothesis test comparing to FST will be conservative. On the other hand, if a low QST is used to estimate the variance of the null distribution, the estimated error will be too small, and the test will reject true null hypotheses too often.Open in a separate windowFigure 2.—The width of the estimated sampling distribution of varies with mean QST. The solid line shows the sampling distribution of QST when the true mean QST value is 0.05. The dotted line shows the sampling distribution that would be estimated for QST from a trait that by chance was at the first percentile of this distribution, and the dashed line shows the sampling distribution that would be inferred from a value taken at the 99th percentile. If the QST of a trait differs from the expectation by chance, then the width of the sampling distribution will also be estimated with substantial error. In particular, the error variance of is overestimated with QST estimates that are too high and underestimated for small QST values.We address this problem by using FST from putatively neutral maker loci in combination with estimates of the additive genetic variance within populations to predict the sampling variance that would be expected for the QST of a neutral trait. We show that the power and type I error rate of this test are greatly superior to traditional methods.  相似文献   
977.
Teeth form as appendages of the ectoderm and their morphogenesis is regulated by tissue interactions mediated by networks of conserved signal pathways. Micro-RNA (miRNA) pathway has emerged as important regulator of various aspects of embryonic development, but its function in odontogenesis has not been elucidated. We show that the expression of RNAi pathway effectors is dynamic during tooth morphogenesis and differentiation of dental cells. Based on microarray profiling we selected 8 miRNAs expressed during morphogenesis and 7 miRNAs in the incisor cervical loop containing the stem cell niche. These miRNAs were mainly expressed in the dental epithelium. Conditional deletion of Dicer-1 in the epithelium (DcrK14/) resulted in rather mild but significant aberrations in tooth shape and enamel formation. The cusp patterns of the DcrK14/ molar crowns resembled the patterns of both ancestral muroid rodents and mouse mutants with modulated signal pathways. In the DcrK14/ incisors, longitudinal grooves formed on the labial surface and these were shown to result from ectopic budding of the progenitor epithelium in the cervical loop. In addition, ameloblast differentiation was impaired and resulted in deficient enamel formation in molars and incisors. To help the identification of candidate target genes of the selected tooth enriched miRNAs, we constructed a new ectodermal organ oriented database, miRTooth. The predicted targets of the selected miRNAs included several components of the main morphogenetic signal pathways regulating tooth development. Based on our findings we suggest that miRNAs modulate tooth morphogenesis largely by fine tuning conserved signaling networks and that miRNAs may have played important roles during tooth evolution.  相似文献   
978.
Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.  相似文献   
979.
980.
The growing capacity to process and store animal tracks has spurred the development of new methods to segment animal trajectories into elementary units of movement. Key challenges for movement trajectory segmentation are to (i) minimize the need of supervision, (ii) reduce computational costs, (iii) minimize the need of prior assumptions (e.g. simple parametrizations), and (iv) capture biologically meaningful semantics, useful across a broad range of species. We introduce the Expectation-Maximization binary Clustering (EMbC), a general purpose, unsupervised approach to multivariate data clustering. The EMbC is a variant of the Expectation-Maximization Clustering (EMC), a clustering algorithm based on the maximum likelihood estimation of a Gaussian mixture model. This is an iterative algorithm with a closed form step solution and hence a reasonable computational cost. The method looks for a good compromise between statistical soundness and ease and generality of use (by minimizing prior assumptions and favouring the semantic interpretation of the final clustering). Here we focus on the suitability of the EMbC algorithm for behavioural annotation of movement data. We show and discuss the EMbC outputs in both simulated trajectories and empirical movement trajectories including different species and different tracking methodologies. We use synthetic trajectories to assess the performance of EMbC compared to classic EMC and Hidden Markov Models. Empirical trajectories allow us to explore the robustness of the EMbC to data loss and data inaccuracies, and assess the relationship between EMbC output and expert label assignments. Additionally, we suggest a smoothing procedure to account for temporal correlations among labels, and a proper visualization of the output for movement trajectories. Our algorithm is available as an R-package with a set of complementary functions to ease the analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号