首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1455篇
  免费   140篇
  国内免费   2篇
  1597篇
  2023年   9篇
  2022年   12篇
  2021年   31篇
  2020年   14篇
  2019年   17篇
  2018年   24篇
  2017年   21篇
  2016年   37篇
  2015年   61篇
  2014年   74篇
  2013年   90篇
  2012年   113篇
  2011年   103篇
  2010年   64篇
  2009年   71篇
  2008年   100篇
  2007年   95篇
  2006年   79篇
  2005年   86篇
  2004年   70篇
  2003年   73篇
  2002年   83篇
  2001年   13篇
  2000年   7篇
  1999年   10篇
  1998年   17篇
  1997年   15篇
  1996年   8篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1990年   5篇
  1988年   6篇
  1986年   4篇
  1985年   8篇
  1984年   10篇
  1983年   6篇
  1982年   10篇
  1980年   5篇
  1978年   5篇
  1974年   6篇
  1973年   4篇
  1971年   4篇
  1969年   4篇
  1966年   4篇
  1908年   5篇
  1899年   3篇
  1889年   4篇
  1887年   3篇
排序方式: 共有1597条查询结果,搜索用时 15 毫秒
851.
852.
Coumarins are important compounds that contribute to the adaptation of plants to biotic or abiotic stresses. Among coumarins, umbelliferone occupies a pivotal position in the plant phenylpropanoid network. Previous studies indicated that umbelliferone is derived from the ortho‐hydroxylation of p‐coumaric acid by an unknown biochemical step to yield 2,4‐dihydroxycinnamic acid, which then undergoes spontaneous lactonization. Based on a recent report of a gene encoding a 2‐oxoglutarate‐dependent dioxygenase from Arabidopsis thaliana that exhibited feruloyl CoA 6′‐hydroxylase activity ( Bourgaud et al., 2006 ), we combined a bioinformatic approach and a cDNA library screen to identify an orthologous ORF (Genbank accession number JF799117 ) from Ruta graveolens L. This ORF shares 59% amino acid identity with feruloyl CoA 6′‐hydroxylase, was functionally expressed in Escherichia coli, and converted feruloyl CoA into scopoletin and p‐coumaroyl CoA into umbelliferone with equal activity. Its bi‐functionality was further confirmed in planta: transient expression of JF799117 in Nicotiana benthamiana yielded plants with leaves containing high levels of umbelliferone and scopoletin when compared to control plants, which contained barely detectable traces of these compounds. The expression of JF799117 was also tightly correlated to the amount of umbelliferone that was found in UV‐elicited R. graveolens leaves. Therefore, JF799117 encodes a p‐coumaroyl CoA 2′‐hydroxylase in R. graveolens, which represents a previously uncharacterized step in the synthesis of umbelliferone in plants. Psoralen, which is an important furanocoumarin in R. graveolens, was found to be a competitive inhibitor of the enzyme, and it may exert this effect through negative feedback on the enzyme at an upstream position in the pathway.  相似文献   
853.
A functional relationship between monothiol glutaredoxins and BolAs has been unraveled by genomic analyses and in several high-throughput studies. Phylogenetic analyses coupled to transient expression of green fluo- rescent protein (GFP) fusions indicated that, in addition to the sulfurtransferase SufE1, which contains a C-terminal BolA domain, three BolA isoforms exist in Arabidopsis thaliana, BolA1 being plastidial, BolA2 nucleo-cytoplasmic, and BolA4 dual-targeted to mitochondria and plastids. Binary yeast two-hybrid experiments demonstrated that all BolAs and SufE 1, via its BolA domain, can interact with all monothiol glutaredoxins. Most interactions between protein couples of the same subcellular compartment have been confirmed by bimolecular fluorescence complementation. In vitro experiments indicated that monothiol glutaredoxins could regulate the redox state of BolA2 and SufE1, both proteins possessing a single conserved reactive cysteine. Indeed, a glutathionylated form of SufE1 lost its capacity to activate the cysteine desuifurase, Nfs2, but it is reactivated by plastidial glutaredoxins. Besides, a monomeric glutathionyiated form and a dimeric disulfide-bridged form of BolA2 can be preferentially reduced by the nucleo-cytoplasmic GrxS17. These results indicate that the glutaredoxin-BolA interaction occurs in several subcellular compartments and suggest that a redox regulation mechanism, disconnected from their capacity to form iron-sulfur cluster-bridged heterodimers, may be physiologically relevant for BolA2 and SufE1.  相似文献   
854.
This report describes the characterization of INCB3344, a novel, potent and selective small molecule antagonist of the mouse CCR2 receptor. The lack of rodent cross-reactivity inherent in the small molecule CCR2 antagonists discovered to date has precluded pharmacological studies of antagonists of this receptor and its therapeutic relevance. In vitro, INCB3344 inhibits the binding of CCL2 to mouse monocytes with nanomolar potency (IC(50) = 10 nM) and displays dose-dependent inhibition of CCL2-mediated functional responses such as ERK phosphorylation and chemotaxis with similar potency. Against a panel of G protein-coupled receptors that includes other CC chemokine receptors, INCB3344 is at least 100-fold selective for CCR2. INCB3344 possesses good oral bioavailability and systemic exposure in rodents that allows in vivo pharmacological studies. INCB3344 treatment results in a dose-dependent inhibition of macrophage influx in a mouse model of delayed-type hypersensitivity. The histopathological analysis of tissues from the delayed-type hypersensitivity model demonstrates that inhibition of CCR2 leads to a substantial reduction in tissue inflammation, suggesting that macrophages play an orchestrating role in immune-based inflammatory reactions. These results led to the investigation of INCB3344 in inflammatory disease models. We demonstrate that therapeutic dosing of INCB3344 significantly reduces disease in mice subjected to experimental autoimmune encephalomyelitis, a model of multiple sclerosis, as well as a rat model of inflammatory arthritis. In summary, we present the first report on the pharmacological characterization of a selective, potent and rodent-active small molecule CCR2 antagonist. These data support targeting this receptor for the treatment of chronic inflammatory diseases.  相似文献   
855.
Several species of arboreal frogs secrete lipids from cutaneous glands and wipe these secretions over the body surfaces to reduce evaporative water losses. Following wiping, frogs become immobile in water-conserving postures, and some have suggested they are torpid. Here we report wiping behaviors and the physiological correlates of immobile postures in the arboreal monkey frog Phyllomedusa hypochondrialis. Skin resistance to water loss was comparatively high, and rates of evaporation were as low as 4% of that from a free water surface. Standard rates of metabolism (SMR) varied from 89 microL O2 h(-1) at 18 degrees C to 316 microL O2 h(-1) at 34 degrees C and were sensitive to both temperature (T) and body mass (W; mL O2 h(-1) = 0.016W0.642 x 10(0.030T)). The mean SMR did not change significantly during four consecutive days of dehydration when animals lost 19%-34% of body mass. Therefore, it appears these frogs do not routinely depress metabolic rates following wiping. However, some individuals that lost higher percentages of body water exhibited trends of decreasing oxygen consumption, suggesting that suppression of metabolic rates might occur at greater levels of body water deficit or perhaps during a slower course of dehydration than imposed by our experiments (e.g., individuals that are secluded during periods of drought).  相似文献   
856.
Flaviviral NS3 is a multifunctional protein displaying N-terminal protease activity in addition to C-terminal helicase, nucleoside 5'-triphosphatase (NTPase), and 5'-terminal RNA triphosphatase (RTPase) activities. NS3 is held to support the separation of RNA daughter and template strands during viral replication. In addition, NS3 assists the initiation of replication by unwinding the RNA secondary structure in the 3' non-translated region (NTR). We report here the three-dimensional structure (at 3.1 A resolution) of the NS3 helicase domain (residues 186-619; NS3:186-619) from Kunjin virus, an Australian variant of the West Nile virus. As for homologous helicases, NS3:186-619 is composed of three domains, two of which are structurally related and held to host the NTPase and RTPase active sites. The third domain (C-terminal) is involved in RNA binding/recognition. The NS3:186-619 construct occurs as a dimer in solution and in the crystals. We show that NS3:186-619 displays both ATPase and RTPase activities, that it can unwind a double-stranded RNA substrate, being however inactive on a double-stranded DNA substrate. Analysis of different constructs shows that full length NS3 displays increased helicase activity, suggesting that the protease domain plays an assisting role in the RNA unwinding process. The structural interaction between the helicase and protease domain has been assessed using small angle X-ray scattering on full length NS3, disclosing that the protease and helicase domains build a rather elongated molecular assembly differing from that observed in the NS3 protein from hepatitis C virus.  相似文献   
857.
858.
A fraction containing neurotransmitter storage vesicles was isolated from rat whole brain and brain regions, and the uptakes of [3H]norepinephrine and [3H]serotonin were determined in vitro. Norepinephrine uptake in vesicle preparations from corpus striatum was higher than in prep arations from cerebral cortex, and uptake in vesicles from the remainder (midbrain + brainstem + cerebellum) was intermediate. The Km for norepinephrine uptake was the same in the three brain regions, but the regions differed in maximal uptake capacity by factors which paralleled total catecholamine concentration rather than content of norepinephrine alone. Intracisternal administration of 6-hydroxydopamine, but not of 5,6-dihydroxytryptamine, reduced vesicular norepinephrine uptake, and pretreat-ment with desmethylimipramine (which protects specifically norepinephrine neurons but not dopamine neurons from the 6-hydroxydopamine) only partially prevented the loss of vesicular norepinephrine uptake. These studies indicate that uptake of norepinephrine by rat brain vesicle preparations occurs in vesicles from norepinephrine and dopamine neurons, but probably not in vesicles from serotonin neurons. Uptake of serotonin by brain vesicle preparations exhibited time, temperature and ATP-Mg2+ requirements nearly identical to those of norepinephrine uptake. The affinity of serotonin uptake matched that of serotonin for inhibition of norepinephrine uptake, and the maximal capacity was the same for serotonin as for norepinephrine. Norepinephrine, dopamine and reserpine inhibited serotonin uptake in a purely competitive fashion, with Kis similar to those for inhibition of norepinephrine uptake. Whereas 5,6-dihydroxytryptamine treatment reduced synaptosomal serotonin uptake but not vesicular serotonin uptake, 6-hydroxydopamine reduced vesicular serotonin uptake in the absence of reductions in synaptosomal serotonin uptake. Thus, in this preparation, serotonin appears to be taken up in vitro into catecholamine vesicles, rather than into serotonin vesicles.  相似文献   
859.
Aquaculture and maritime traffic have been identified as the main vectors for introductions of alien marine species. Except for one notorious case of Caulerpa taxifolia, the role of aquarium trade towards the introduction of alien seaweeds has been largely unassessed. Here, we address the risk of accidental release of seaweed species from the aquarium trade market in European waters. We assessed the importance and diversity of seaweed species in the European online aquarium retail circuit. Our web survey revealed more than 30 genera available for online sale into Europe, including known introduced and invasive species. A second aspect of the study consisted in sampling algal diversity found in aquaria. While allowing direct and accurate identification of the specimens, this approach was targeting not only ornamental species, but also seaweeds that may be accidentally present in the aquarium circuit. By DNA-barcoding we identified no less than 134 taxa, 7 of which are flagged as introduced in Europe and 5 reported as invasive. Climate envelope models show that at least 23 aquarium species have the potential to thrive in European waters. As expected by the tropical conditions in most aquaria, southern Atlantic regions of Europe and the Mediterranean are the most vulnerable towards new introductions. Further predictions show that this risk will increase and shift northwards as global warming proceeds. Overall our data indicate that aquarium trade poses a potential risk of new seaweed introductions, and calls for a cautious approach.  相似文献   
860.

Background

Identifying the molecular mechanisms and neural circuits that control learning and memory are major challenges in neuroscience. Mammalian MAGI/S-SCAM is a multi-PDZ domain synaptic scaffolding protein that interacts with a number of postsynaptic signaling proteins and is thereby thought to regulate synaptic plasticity [1], [2], [3].

Principal Findings

While investigating the behavioral defects of C. elegans nematodes carrying a mutation in the single MAGI ortholog magi-1, we have identified specific neurons that require MAGI-1 function for different aspects of associative learning and memory. Various sensory stimuli and a food deprivation signal are associated in RIA interneurons during learning, while additional expression of MAGI-1 in glutamatergic AVA, AVD and possibly AVE interneurons is required for efficient memory consolidation, i.e. the ability to retain the conditioned changes in behavior over time. During associative learning, MAGI-1 in RIA neurons controls in a cell non-autonomous fashion the dynamic remodeling of AVA, AVD and AVE synapses containing the ionotropic glutamate receptor (iGluR) GLR-1 [4]. During memory consolidation, however, MAGI-1 controls GLR-1 clustering in AVA and AVD interneurons cell-autonomously and depends on the ability to interact with the β-catenin HMP-2.

Significance

Together, these results indicate that different aspects of associative learning and memory in C. elegans are likely carried out by distinct subsets of interneurons. The synaptic scaffolding protein MAGI-1 plays a critical role in these processes in part by regulating the clustering of iGluRs at synapses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号