首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1458篇
  免费   147篇
  2023年   7篇
  2022年   13篇
  2021年   36篇
  2020年   25篇
  2019年   33篇
  2018年   30篇
  2017年   33篇
  2016年   44篇
  2015年   72篇
  2014年   84篇
  2013年   84篇
  2012年   116篇
  2011年   99篇
  2010年   66篇
  2009年   55篇
  2008年   89篇
  2007年   78篇
  2006年   67篇
  2005年   61篇
  2004年   50篇
  2003年   64篇
  2002年   39篇
  2001年   37篇
  2000年   37篇
  1999年   23篇
  1998年   14篇
  1997年   10篇
  1996年   9篇
  1995年   9篇
  1994年   7篇
  1993年   11篇
  1992年   21篇
  1991年   16篇
  1990年   12篇
  1989年   10篇
  1988年   13篇
  1987年   20篇
  1986年   15篇
  1985年   18篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   9篇
  1978年   5篇
  1975年   3篇
  1972年   7篇
  1971年   4篇
  1970年   5篇
排序方式: 共有1605条查询结果,搜索用时 46 毫秒
61.
One of the major challenges for plant scientists is increasing wheat (Triticum aestivum) yield potential (YP). A significant bottleneck for increasing YP is achieving increased biomass through optimization of radiation use efficiency (RUE) along the crop cycle. Exotic material such as landraces and synthetic wheat has been incorporated into breeding programmes in an attempt to alleviate this; however, their contribution to YP is still unclear. To understand the genetic basis of biomass accumulation and RUE, we applied genome‐wide association study (GWAS) to a panel of 150 elite spring wheat genotypes including many landrace and synthetically derived lines. The panel was evaluated for 31 traits over 2 years under optimal growing conditions and genotyped using the 35K wheat breeders array. Marker‐trait association identified 94 SNPs significantly associated with yield, agronomic and phenology‐related traits along with RUE and final biomass (BM_PM) at various growth stages that explained 7%–17% of phenotypic variation. Common SNP markers were identified for grain yield, BM_PM and RUE on chromosomes 5A and 7A. Additionally, landrace and synthetic derivative lines showed higher thousand grain weight (TGW), BM_PM and RUE but lower grain number (GM2) and harvest index (HI). Our work demonstrates the use of exotic material as a valuable resource to increase YP. It also provides markers for use in marker‐assisted breeding to systematically increase BM_PM, RUE and TGW and avoid the TGW/GM2 and BM_PM/HI trade‐off. Thus, achieving greater genetic gains in elite germplasm while also highlighting genomic regions and candidate genes for further study.  相似文献   
62.
Objective: In this study, we investigated about the potential of serum ferritin as a complementary diagnostic biomarker of polycystic ovarian syndrome (PCOS) by performing a meta-analysis of existing literature.

Materials and methods: Eleven studies written in English were retrieved up to 30 June 2018. Data were extracted from the selected studies by two of the authors and was subjected to statistical analysis. Levels of serum ferritin were compared between women with PCOS and controls using the standardized mean difference (SMD) and 95% confidence interval (CI). Subgroup analysis was also performed and stratified by ethnicity (Asians versus Caucasians).

Results: Overall post-outlier outcomes indicated that elevated serum ferritin is strongly associated with PCOS (SMD: 0.52; 95% CI: 0.40–0.64; PA?=?10?5). Subgroup analysis by ethnicity showed no significant difference between Asian and Caucasian population. Post-outlier receiving operations characteristics curve were plotted and showed that values for serum ferritin showed good potential in discriminating patients with and without PCOS (AUC?=?0.827, p?=?0.006).

Conclusion: Our findings suggest that high serum ferritin level is significantly associated with PCOS and its potential as a biomarker is evident in its high diagnostic accuracy. However, additional studies are needed to confirm our claims.  相似文献   

63.
64.
Antarctic subglacial lakes have, over the past few years, been hypothesised to house unique forms of life and hold detailed sedimentary records of past climate change. Testing this hypothesis requires in situ examinations. The direct measurement of subglacial lakes has been considered ever since the largest and best-known lake, named Lake Vostok, was identified as having a deep water-column. The Subglacial Antarctic Lake Environments (SALE) programme, set up by the Scientific Committee on Antarctic Research (SCAR) to oversee subglacial lakes research, state that prior exploration of smaller lakes would be a “prudent way forward”. Over 145 subglacial lakes are known to exist in Antarctica, but one lake in West Antarctica, officially named Ellsworth Subglacial Lake (referred to hereafter as Lake Ellsworth), stands out as a candidate for early exploration. A consortium of over 20 scientists from seven countries and 14 institutions has been assembled to plan the exploration of Lake Ellsworth. An eight-year programme is envisaged: 3 years for a geophysical survey, 2 years for equipment development and testing, 1 year for field planning and operation, and 2 years for sample analysis and data interpretation. The science experiment is simple in concept but complex in execution. Lake Ellsworth will be accessed using hot water drilling. Once lake access is achieved, a probe will be lowered down the borehole and into the lake. The probe will contain a series of instruments to measure biological, chemical and physical characteristics of the lake water and sediments, and will utilise a tether to the ice surface through which power, communication and data will be transmitted. The probe will pass through the water column to the lake floor. The probe will then be pulled up and out of the lake, measuring its environment continually as this is done. Once at the ice surface, any water samples collected will be taken from the probe for laboratory analysis (to take place over subsequent years). The duration of the science mission, from deployment of the probe to its retrieval, is likely to take between 24 and 36 h. Measurements to be taken by the probe will provide data about the following: depth, pressure, conductivity and temperature; pH levels; biomolecules (using life marker chips); anions (using a chemical analyzer); visualisation of the environment (using cameras and light sources); dissolved gases (using chromatography); and morphology of the lake floor and sediment structures (using sonar). After the probe has been retrieved, a sediment corer may be dropped into the lake to recover material from the lake floor. Finally, if time permits, a thermistor string may be left in the lake water to take time-dependent measurements of the lake’s water column over subsequent years. Given that the comprehensive geophysical survey of the lake will take place in two seasons during 2007–2009, a two-year instrument and logistic development phase from 2008 (after the lake’s bathymetry has been assessed) makes it possible that the exploration of Lake Ellsworth could take place at the beginning of the next decade.  相似文献   
65.

Industrial Control Systems and Supervisory Control and Data Acquisition (ICS/SCADA) systems are profound backbones of the national critical infrastructures and are essential to the sustainability of society since they help monitoring and controlling the cyber-enable services, such as energy, transportation, healthcare, etc. Modern SCADA systems continue to use the legacy communication protocols that lack adequate security mechanisms to provide trusted device authentication and ensure data flow integrity. Furthermore, advent of state-of-the-art network-capable sensor technology exposes many unique vulnerabilities to the adversaries. Thus, integrity of the data originated from field sensors along with their identity must be managed carefully in order to enhance reliability of ICS/SCADA ecosystems. In this paper, we present a blockchain-based SRAM PUF Authentication and Integrity (BloSPAI) protocol that aims to ensure a continuous authentication of field sensors and provide a robust data flow integrity process by leveraging distributed ledger and hardware security primitives. The prototype of the protocol has been implemented in a sensor-integrated Raspberry PI testbed that is interfaced with a permissioned blockchain network. We discuss the performance and overhead aspects of the proposed BloSPAI protocol and compare with state-of-art cybersecurity solutions. Through experimental evaluation demonstrates the relationship between the size of the blockchain network impacts the throughput in terms of time to commit transactions and overall systems setup time.

  相似文献   
66.
The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog, Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater mean Tb and Tpref than those from forests. In contrast, CTmax and TSM did not differ significantly between habitats. However, CTmax did increase moderately with increasing Tb, suggesting that changes in CTmax may be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. Although O. pumilio exhibited moderate divergence in Tpref, CTmax appears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain their Tb below air temperatures that reach or exceed CTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming. Abstract in Spanish is available with online material.  相似文献   
67.
Regional climate change in Antarctica would favor the carbon assimilation of Antarctic vascular plants, since rising temperatures are approaching their photosynthetic optimum (10–19°C). This could be detrimental for photoprotection mechanisms, mainly those associated with thermal dissipation, making plants more susceptible to eventual drought predicted by climate change models. With the purpose to study the effect of temperature and water availability on light energy utilization and putative adjustments in photoprotective mechanisms of Deschampsia antarctica Desv., plants were collected from two Antarctic provenances: King George Island and Lagotellerie Island. Plants were cultivated at 5, 10 and 16°C under well‐watered (WW) and water‐deficit (WD, at 35% of the field capacity) conditions. Chlorophyll fluorescence, pigment content and de‐epoxidation state were evaluated. Regardless of provenances, D. antarctica showed similar morphological, biochemical and functional responses to growth temperature. Higher temperature triggered an increase in photochemical activity (i.e. electron transport rate and photochemical quenching), and a decrease in thermal dissipation capacity (i.e. lower xanthophyll pool, Chl a/b and β carotene/neoxanthin ratios). Leaf mass per unit area was reduced at higher temperature, and was only affected in plants exposed to WD at 16°C and exhibiting lower electron transport rate and amount of chlorophylls. D. antarctica is adapted to frequent freezing events, which may induce a form of physiological water stress. Photoprotective responses observed under WD contribute to maintain a stable photochemical activity. Thus, it is possible that short‐term temperature increases could favor the photochemical activity of this species. However, long‐term effects will depend on the magnitude of changes and the plant's ability to adjust to new growth temperature.  相似文献   
68.
69.
Lipopolysaccharide (LPS, i.e. endotoxin) present in meningococcal outer-membrane protein and polysaccharide preparations made for vaccine use was quantitated by a silver-stain method following SDS-PAGE. The reactivities of LPS in the preparations were also measured by rabbit pyrogenicity and Limulus amoebocyte lysate (LAL) assay. Although rabbit pyrogenicity and LAL assay are more sensitive than the silver stain method, the latter provided an actual amount of LPS present in the protein or in the polysaccharide. For a meningococcal protein preparation, rabbit pyrogenicity showed about one-tenth, and even less by LAL assay, of the actual amount of LPS. This is because protein-bound LPS in meningococcal protein preparations is about 10-fold less active in causing fever in rabbits, and 20- to 40-fold less active in the gelation of LAL than the same amount of a purified free LPS which is generally used as a reference in quantitating LPS in these two assays. As for the small amount of LPS present in a meningococcal polysaccharide preparation, similar LPS content was obtained when measured by the three methods suggesting that the LPS is not bound to the polysaccharide in contrast to that in the proteins mentioned above. The purified meningococcal LPS was pyrogenic in rabbits at 1 ng/kg.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号