首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   10篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   10篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2001年   9篇
  2000年   3篇
  1999年   9篇
  1998年   5篇
  1997年   1篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1990年   8篇
  1989年   7篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   3篇
  1979年   11篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   6篇
  1973年   1篇
  1969年   1篇
排序方式: 共有246条查询结果,搜索用时 62 毫秒
11.
12.
We probed elastic and loss moduli in the adherent human airway smooth muscle cell through a variety of receptor systems, each serving as a different molecular window on cytoskeletal dynamics. Coated magnetic microbeads were attached to the cell surface via coating-receptor binding. A panel of bead coatings was investigated: a peptide containing the sequence RGD, vitronectin, urokinase, activating antibody against 1-integrin, nonactivating antibody against 1-integrin, blocking antibody against 1-integrin, antibody against 1-integrin, and acetylated low-density lipoprotein. An oscillatory mechanical torque was applied to the bead, and resulting lateral displacements were measured at baseline, after actin disruption by cytochalasin D, or after contractile activation by histamine. As expected, mechanical moduli depended strongly on bead type and bead coating, differing at the extremes by as much as two orders of magnitude. In every case, however, elastic and loss moduli increased with frequency f as a weak power law, f x–1. Moreover, with few exceptions, data could be scaled such that elastic and frictional responses depended solely on the power law exponent x. Taken together, these data suggest that power law behavior represents a generic feature of underlying protein-protein dynamics. actin; cytoskeleton; magnetic twisting cytometry; scale free; viscoelasticity  相似文献   
13.
We describe a three-dimensional magnetic twisting device that is useful in characterizing the mechanical properties of cells. With the use of three pairs of orthogonally aligned coils, oscillatory mechanical torque was applied to magnetic beads about any chosen axis. Frequencies up to 1 kHz could be attained. Cell deformation was measured in response to torque applied via an RGD-coated, surface-bound magnetic bead. In both unpatterned and micropatterned elongated cells on extracellular matrix, the mechanical stiffness transverse to the long axis of the cell was less than half that parallel to the long axis. Elongated cells on poly-L-lysine lost stress fibers and exhibited little mechanical anisotropy; disrupting the actin cytoskeleton or decreasing cytoskeletal tension substantially decreased the anisotropy. These results suggest that mechanical anisotropy originates from intrinsic cytoskeletal tension within the stress fibers. Deformation patterns of the cytoskeleton and the nucleolus were sensitive to loading direction, suggesting anisotropic mechanical signaling. This technology may be useful for elucidating the structural basis of mechanotransduction. cytoskeleton; prestress; stress fibers; mechanotransduction; mechanical deformation  相似文献   
14.
We demonstrate reduction and restoration of contractile ability in response to protein extraction and reconstitution in Triton X-100/glycerol-permeabilized smooth muscle fibers. Through significant reduction in the content of caldesmon (CaD), calponin (CaP), and the 20-kDa regulatory light chain (RLC) of myosin, but not other contractile proteins in "chemically skinned" fibers, we substantially reduced the contractile ability of these fibers, as measured by their ability to generate isometric force and to hydrolyze ATP by actomyosin Mg2+ ATPase. When the protein-depleted fibers were then reconstituted (either with a mixture of purified protein standards of CaD, CaP, and myosin RLC or with a protein extract from the demembranized muscle fibers containing CaD, CaP, and myosin RLC plus several low-molecular-mass proteins), all proteins used for reincorporation returned nearly to control levels, as did isometric force generation and rate of ATP hydrolysis. The fact that the low-molecular-mass proteins do not affect contractility in this model system indicates that our methods for reversible modulation of the content of CaP and CaD may provide a valuable tool for studying the thin-filament-based regulation of contractility.  相似文献   
15.
We tested the hypothesis that mechanical plasticity of airway smooth muscle may be mediated in part by the p38 mitogen-activated protein (MAP) kinase pathway. Bovine tracheal smooth muscle (TSM) strips were mounted in a muscle bath and set to their optimal length, where the active force was maximal (F(o)). Each strip was then contracted isotonically (at 0.32 F(o)) with ACh (maintained at 10(-4) M) and allowed to shorten for 180 min, by which time shortening was completed and the static equilibrium length was established. To simulate the action of breathing, we then superimposed on this steady distending force a sinusoidal force fluctuation with zero mean, at a frequency of 0.2 Hz, and measured incremental changes in muscle length. We found that TSM strips incubated in 10 microM SB-203580-HCl, an inhibitor of the p38 MAP kinase pathway, demonstrated a greater degree of fluctuation-driven lengthening than did control strips, and upon removal of the force fluctuations they remained at a greater length. We also found that the force fluctuations themselves activated the p38 MAP kinase pathway. These findings are consistent with the hypothesis that inhibition of the p38 MAP kinase pathway destabilizes muscle length during physiological loading.  相似文献   
16.
We have developed a model of forces developed inlung tissue in which the stress-bearing units are heterogeneous. Eachelement of the fiber network is composed of an idealized elastin andcollagen element in parallel. Elastin is represented by linear springs and collagen by stiff strings that extend without resistance until taut. The model can quantitatively account for the nonlinear shape ofthe length-tension curve of lung tissue strips when the knee lengths ofthe collagen fibers are distributed according to an inverse power law.The novel feature of this model is that as macroscopic strain increasesthe load is carried by progressively fewer elements with progressivelyhigher forces, and preferential pathways of force transmission emergewithin the matrix. The topology of these self-organizing pathways offorce transmission takes the rough appearance of cracks, but, unlikereal cracks, they represent the locus of force concentration ratherthan force release.

  相似文献   
17.
Jeffrey J Fredberg 《Journal of applied physiology》2008,104(6):1848-9; author reply 1851
  相似文献   
18.
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.  相似文献   
19.
For a monolayer sheet to migrate cohesively, it has long been suspected that each constituent cell must exert physical forces not only upon its extracellular matrix but also upon neighboring cells. The first comprehensive maps of these distinct force components reveal an unexpected physical picture. Rather than showing smooth and systematic variation within the monolayer, the distribution of physical forces is dominated by heterogeneity, both in space and in time, which emerges spontaneously, propagates over great distances, and cooperates over the span of many cell bodies. To explain the severe ruggedness of this force landscape and its role in collective cell guidance, the well known mechanisms of chemotaxis, durotaxis, haptotaxis are clearly insufficient. In a broad range of epithelial and endothelial cell sheets, collective cell migration is governed instead by a newly discovered emergent mechanism of innately collective cell guidance - plithotaxis.  相似文献   
20.

Background

A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma.

Methods

Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds.

Results

Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo.

Conclusions

This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号