首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   3篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   6篇
  2006年   3篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1987年   8篇
  1985年   2篇
  1984年   3篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有124条查询结果,搜索用时 625 毫秒
101.
102.
A deep inflation (DI) reverses induced bronchoconstriction in normal human subjects whether assessed by airway resistance before and after a DI or by isovolumic maximal expiratory flows (Vmax) from partial expiratory flow-volume (PEFV) vs. maximum expiratory flow-volume (MEFV) maneuvers. These observations suggest that with induced constriction the hysteresis of airways exceeds that of the parenchyma. In contrast with humans, a previous study of ours on dogs indicated that induced increases in airway resistance were unaffected by DI, suggesting that hysteresis of airways and parenchyma were equal. We hypothesized therefore that in constricted dog lungs, any differences that might arise in isovolumic Vmax between PEFV and MEFV maneuvers would not be due to changes in airway caliber but rather would be wholly determined by isovolumic differences in deflational recoil pressures. Recoil pressures were dynamically measured using six separate alveolar capsules in each of six dogs. At base line there were no significant differences between isovolumic recoil pressures or maximal flows with volume history, suggesting equal degrees of airway and parenchymal hysteresis. After histamine-induced constriction there were also no isovolumic differences in flows, but due to striking nonhomogeneities in dynamic recoil pressure among alveolar capsules, it was not possible to express a single meaningful recoil pressure pertinent to the lungs as a whole. These findings are consistent with the idea that isovolumic comparisons of Vmax serve as a reasonable indicator of changes in the relative degree of airway and parenchymal hysteresis.  相似文献   
103.
104.
105.
The mixing of gases in the pulmonary acinus was characterized by analyzing axial gas dispersion during steady flow in models of respiratory bronchioles and alveolar ducts. An analysis (method of moments) developed for addressing dispersion in porous media was used to derive an integral expression for the axial dispersion coefficient (D*). Evaluation of D* required solving the Navier-Stokes equations for the flow field and a convection-diffusion type equation arising from the analysis. D* was strongly dependent on alveolar volume per central duct volume, the aperture size through which the alveoli communicate with the central duct, and the Péclet number (Pe). At smaller Pe (flow rate) D* was substantially smaller than the molecular diffusion coefficient, whereas at larger Pe (flow rate) D* was much greater than the Taylor-Aris result for flow-enhanced dispersion in straight tubes. Also, flow-enhanced dispersion became appreciable at smaller Pe than indicated by the Taylor-Aris result. These behaviors transcend both the lower and upper limits established previously for gas mixing in the pulmonary acinus.  相似文献   
106.
R. Peslin et al. measured thoracic gas volume (TGV) in adults using a new method employing low-frequency ambient pressure changes (APC) (J. Appl. Physiol. 62: 359-363, 1987). We extended that methodology and then tested the hypothesis that this technique was applicable to small mammals. TGV [at functional residual capacity (FRC)] by APC and by conventional Boyle's law was compared in 12 rabbits. The rabbits were anesthetized, tracheostomized, intubated, and placed in a pressure plethysmograph. Although in the method of Peslin et al. box pressure was oscillated at a single frequency, in our extension box pressure was oscillated simultaneously at two frequencies (0.1 and 0.2 Hz). Flow at the airway opening consisted of rapid events due to spontaneous breathing, superposed on slower events due to the alveolar gas compression. The slower events were analyzed to yield alveolar gas compliance and, by Boyle's law, FRC. FRC by APC was highly correlated to FRC by conventional plethysmography (r = 0.85). Compared with the methodology of Peslin et al., our extension relaxes a key limitation and yields systematically higher estimates of FRC. We conclude that this method is applicable to small mammals, despite an inherently more compliant chest wall, and that the methodological extension improves the estimate of FRC.  相似文献   
107.
Spreading of exogenous surfactant in an airway   总被引:3,自引:0,他引:3  
  相似文献   
108.
109.
Research in the mechanics of soft tissue, and lung tissue in particular, has emphasized that dissipative processes depend predominantly on the viscous stress. A corollary is that dissipative losses may be expressed as a tissue viscous resistance, (Rti). An alternative approach is offered by the structural damping hypothesis, which holds that dissipative processes within soft tissue depend directly more on the elastic stress than on the viscous stress. This implies that dissipative and elastic processes within lung tissues are coupled at a fundamental level. We induced alterations of Rti by exposing canines to aerosols of the constrictors prostaglandin F2 alpha, histamine, and methacholine and by changing volume history. Using the structural damping paradigm, we could separate those alterations in Rti into the product of two distinct contributions: change in the coefficient of coupling of dissipation to elastance (eta) and change in the elastance itself (Edyn). Response of Edyn accounted for most of the response of resistance associated with contractile stimulation; it accounted for almost all the response associated with differences in volume history. The eta changed appreciably with constriction but accounted for little of the response of Rti with volume history. According to the structural damping hypothesis, induced changes in eta with constriction must reflect changes in the kinetics of the stress-bearing process, i.e., differences in cross-bridge kinetics within the target contractile cell and/or differences in the influence of the target cell on other stress-bearing systems. We conclude that, regardless of underlying processes, the structural damping analysis demonstrates a fundamental phenomenological simplification: when Edyn responds, Rti is obligated to respond to a similar degree.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号