首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3916篇
  免费   398篇
  国内免费   1篇
  2021年   35篇
  2018年   41篇
  2017年   36篇
  2016年   68篇
  2015年   107篇
  2014年   131篇
  2013年   149篇
  2012年   197篇
  2011年   230篇
  2010年   144篇
  2009年   122篇
  2008年   200篇
  2007年   195篇
  2006年   210篇
  2005年   230篇
  2004年   220篇
  2003年   186篇
  2002年   215篇
  2001年   38篇
  2000年   24篇
  1999年   51篇
  1998年   71篇
  1997年   62篇
  1996年   43篇
  1995年   47篇
  1994年   45篇
  1993年   43篇
  1992年   30篇
  1991年   26篇
  1990年   22篇
  1989年   32篇
  1988年   27篇
  1987年   36篇
  1986年   24篇
  1985年   43篇
  1984年   47篇
  1983年   33篇
  1982年   51篇
  1981年   47篇
  1980年   52篇
  1979年   51篇
  1978年   38篇
  1977年   36篇
  1976年   38篇
  1975年   31篇
  1974年   33篇
  1973年   35篇
  1970年   21篇
  1969年   22篇
  1968年   21篇
排序方式: 共有4315条查询结果,搜索用时 15 毫秒
911.
From an ether extract of the twigs and leaves of Sapium insigne four new diterpene esters were isolated. They were identified as 12-O-(2′E, 4′E-decadienoyl)-4-deoxy-16-hydroxyphorbol-13-acetate, 12-O-hexanoyl-4α-deoxy-phorbol-13-acetate, 12-O-hexanoyl-4α-deoxy-16-hydroxyphorbo-1-13-acetate and 12-O-dodecanoyl-4α-deoxy-16-hydroxyphorbol-13-acetate by spectroscopic and chemical methods.  相似文献   
912.
The genomes of Old-World, New-World, and prosimian primates contain members of a large class of highly repetitive DNAs that are related to one another and to component DNA of the African green monkey by their sequence homologies and restriction site periodicities. The members, of this class of highly repetitive DNAs are termed the alphoid DNAs, after the prototypical member, component of the African green monkey which was the first such DNA to be identified (Maio, 1971) and sequenced (Rosenberg et al., 1978). The alphoid DNAs appear to be uniquely primate sequences. — From the restriction enzyme cleavage patterns and Southern blot hybridizations under different stringency conditions, the alphoid DNAs comprise multiple sequence families exhibiting varying degrees of homology to component DNA. They also share common elements in their restriction site periodicities (172 · n base-pairs), in the long-range organization of their repeating units, and in their banding behavior in CsCl and Cs2SO4 buoyant density gradients, in which they band within the bulk DNA as cryptic repetitive components. — In the three species from the Family Cercopithecidae examined, the alphoid DNAs represent the most abundant, tandemly repetitive sequence components, comprising about 24% of the African green monkey genome and 8 to 10% of the Rhesus monkey and baboon genomes. In restriction digests, the bulk of the alphoid DNAs among the Cercopithecidae appeared quantitatively reduced to a simple series of arithmetic segments based on a 172 base-pair (bp) repeat. In contrast with these simple restriction patterns, complex patterns were observed when human alphoid DNAs were cleaved with restriction enzymes. Detailed analysis revealed that the human genome contains multiple alphoid sequence families which differ from one another both in their repeat sequence organization and in their degree of homology to the African green monkey component DNA. — The finding of alphoid sequences in other Old-World primate families, in a New-World monkey, and in a prosimian primate attests to the antiquity of these sequences in primate evolution and to the sequence conservatism of a large class of mammalian highly repetitive DNA. In addition, the relative conservatism exhibited by these sequences may distinguish the alphoid DNAs from more recently evolved highly repetitive components and satellite DNAs which have a more restricted taxonomical distribution.  相似文献   
913.
914.
The characterization of cytochalasin B binding and the resulting effect on hexose transport in rat liver parenchymal cells in primary culture were studied. The cells were isolated from adult rats by perfusing the liver in situ with collagenase and separating the hepatocytes from the other cell types by differential centrifugation. The cells were established in primary culture on collagen-coated dishes. The binding of [4-3H]cytochalasin B and transport of 3-O-methyl-D-[14C]glucose into cells were investigated in monolayer culture followed by digestion of cells and scintillation counting of radioactivity. The binding of cytochalasin B to cells was rapid and reversible with association and dissociation being essentially complete within 2 min. Analysis of the kinetics of cytochalasin B binding by Scatchard plots revealed that binding was biphasic, with the parenchymal cell being extremely rich in high-affinity binding sites. The high-affinity site, thought to be the glucose-transport carrier, exhibited a KD of 2.86 · 10?7 M, while the low-affinity site had a KD of 1.13 · 10?5M. Sugar transport was monitored by 3-O-methyl-D-glucose uptake and it was found that cytochalasin B (10?5M) drastically inhibited transport. However, D-glucose (10?5M) did not displace cytochalasin B, and cytochalasin E, which does not inhibit transport, was competitive for cytochalasin B at only the low-affinity site, demonstrating that the cytochalasin B inhibition of sugar transport occurs at the high-affinity site but that the inhibition is non-competitive in nature. Therefore, the liver parenchymal cells may represent an unusually rich source of glucose-transport system which may be useful in the isolation of this important membrane carrier.  相似文献   
915.
Toward a molecular paleontology of primate genomes   总被引:12,自引:0,他引:12  
KpnI restriction of anthropoid primate DNAs, from a New World monkey to man, releases a series of segments that are remarkable among all of the alphoid DNAs in the constancy of their relative amounts in the various primate genomes, in their long-range organization, and in their internal sequence structure. These segments are labeled the KpnI A, B, C and D segments. Cross-hybridization analysis by Southern filter-transfer hybridization indicates that the KpnI segments represent separate and distinct families of alphoid DNAs. These families are termed the KpnI A, B, C and D families of alphoid sequences, of which only the KpnI A and B families were studied in detail here. - Evidence is presented suggesting that the KpnI segments do not exist as long, tandemly repeated sequences in the primate genome: rather, they may occur interspersed among other, perhaps nonalphoid sequences. From the stained gel patterns and from Southern filter-transfer hybridization experiments, the KpnI families appear to be absent from the genomes of the two prosimians studied - the galago and the black lemur. The KpnI A and B families are found among all of the anthropoid primates, including the New World capuchin monkey. The KpnI C family was detected in the genomes of the Old World anthropoid primates whereas the KpnI D family was detected only among the great apes and man. - The results are in accord with the observation (Musich et al., 1980) that with the continued evolutionary development of the primate Order, there has been a parallel trend toward an increased number and variety of alphoid DNA sequences. The properties of the KpnI families suggest that these sequences, unique among the alphoid DNAs, have been conservatively maintained throughout primate phylogeny and that they are among the most ancient of all primate DNAs.  相似文献   
916.
The absolute rate of protein synthesis in developing embryos of Strongylocentrotus purpuratus has been measured by lysine incorporation. Protein synthesis rises to about 240 pg hr?1 embryo?1 from the two- to eight-cell stage, and then gradually increases to a maximum of over 500 pg hr?1 embryo?1 in the blastula. The changes in protein synthesis are accompanied by similar increase in the polyribosomes in the embryo, so that 60–65% of the ribosomes are in polyribosomes by the blastula stage. The data are used to calculate an average peptide elongation rate of 1.8 amino acids ribosome?1 sec?1.  相似文献   
917.
The chromatin proteins of different embryonic stages, ranging from 16 cell to gastrula, of the sea urchin Strongylocentrotus purpuratus were labeled, in vivo, with 14C and were labeled, in vitro, with 3H. The proteins thus labeled were separated by high resolution two-dimensional electrophoresis. The extent of possible cytoplasmic contamination has been examined with reconstruction experiments. Gastrula chromatin contains over 200 separable nonhistone proteins, and about 90% of them are also detected at the 60-cell stage; cleavage stages have over all protein gel patterns displaying numerous differences with the pattern shown by chromatin from later stages. Differences in the proportion of histone to nonhistone proteins that are synthesized are observable at the different embryonic stages, with histones predominating in midcleavage. About half of the nonhistone proteins of the developing embryo that can be labeled with 3H, in vitro, are not labeled with 14C, in vivo, and hence, must originate from a reservoir of nonhistone proteins assembled during oogenesis.  相似文献   
918.
A null mutation at the phosphoglucomutase locus (Pgm-1) was discovered by electrophoretic analysis of the inbred mouse strain C57 BL/6J. The null allele (Pgm-1 n) was shown to segregate as a Mendelian unit alternative to the Pgm-1 a and Pgm-1 b alleles. Mice expressing the Pgm-1 n allele, either in the heterozygous or homozygous state, are viable, healthy, and fertile. The occurrence of the Pgm-1 n mutant revealed a previously unreported genetic locus (Pgm-3) that controls the expression of a third phosphoglucomutase. Two electrophoretically expressed alleles of Pgm-3 (inherited without dominance) are found in the inbred mouse strains C57 BL/6J and DBA/2J. Linkage observed between the Pgm-3 locus, the dilute locus (d) and the cytoplasmic malic enzyme locus (Mod-1) has allowed assignment of the Pgm-3 locus to chromosome 9. A striking tissue specific expression of Pgm-1 and Pgm-3 was observed. Products of the Pgm-3 locus were detected in kidney, testes, brain, and heart. In contrast, Pgm-1 controlled isozymes were present in kidney, spleen, ovaries, and erythrocytes.Financial support for this work was provided in part by Contract #263-78-C-0393 from the National Institute of Environmental Health Sciences to the Research Triangle Institute.  相似文献   
919.
920.
The salivary neuroeffector system of Helisoma consists of the paired salivary glands and buccal ganglia. Previous work demonstrated that neuronal control was required for coordination of activity in the two salivary glands. This neuronal control is provided by a pair of identified buccal ganglion neurons, 4R and 4L. This study examines the organization of this neuronal control and addresses the questions of monosynaptic vs. polysynaptic pathways as well as the bilateral effects of each neuron 4. Action potentials in neuron 4 elicit one-for-one EPSPs in a subpopulation of the salivary cells. These EPSPs can, in some cases, be increased by TEA injection into a neuron 4 and are unaffected by the addition of six-times normal calcium. These data coupled with the constancy of synaptic transmission, as well as morphological evidence, further indicate the monosynaptic nature of the connection between neurons 4 and salivary secretory cells. Three different mechanisms exist to insure that activity in 4R and 4L result in coordinated activation of the salivary glands: (1) Lucifer Yellow injection and direct intracellular recording and stimulation demonstrate that both 4R and 4L can send axons to and innervate both salivary glands; (2) both 4R and 4L receive virtually identical synaptic input from higher-order buccal ganglion neurons; and (3) 4R and 4L are electrically coupled. Thus, the system is organized with a high degree of redundancy, and bilateral synchrony of glandular activity is assured by mechanisms at various levels of neuronal organization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号