首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   40篇
  国内免费   1篇
  2022年   3篇
  2021年   5篇
  2019年   7篇
  2018年   2篇
  2016年   7篇
  2015年   11篇
  2014年   12篇
  2013年   21篇
  2012年   27篇
  2011年   17篇
  2010年   12篇
  2009年   10篇
  2008年   11篇
  2007年   12篇
  2006年   11篇
  2005年   13篇
  2004年   11篇
  2003年   12篇
  2002年   12篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   2篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1982年   2篇
  1980年   3篇
  1979年   3篇
  1977年   4篇
  1976年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1958年   2篇
  1949年   2篇
  1947年   2篇
  1942年   2篇
  1935年   2篇
  1934年   2篇
  1931年   2篇
排序方式: 共有370条查询结果,搜索用时 375 毫秒
51.
52.
53.
Detecting differentially expressed proteins is a key goal of proteomics. We describe a label-free method, the spectral index, for analyzing relative protein abundance in large-scale data sets derived from biological samples by shotgun proteomics. The spectral index is comprised of two biochemically plausible features: relative protein abundance (assessed by spectral counts) and the number of samples within a group with detectable peptides. We combined the spectral index with permutation analysis to establish confidence intervals for assessing differential protein expression in bronchoalveolar lavage fluid from cystic fibrosis and control subjects. Significant differences in protein abundance determined by the spectral index agreed well with independent biochemical measurements. When used to analyze simulated data sets, the spectral index outperformed four other statistical tests (Student's t-test, G-test, Bayesian t-test, and Significance Analysis of Microarrays) by correctly identifying the largest number of differentially expressed proteins. Correspondence analysis and functional annotation analysis indicated that the spectral index improves the identification of enriched proteins corresponding to clinical phenotypes. The spectral index is easily implemented and statistically robust, and its results are readily interpreted graphically. Therefore, it should be useful for biomarker discovery and comparisons of protein expression between normal and disease states.  相似文献   
54.
A new family of Histamine H(3) receptor antagonists (5a-t) has been prepared based on the structure of the natural product Conessine, a known H(3) antagonist. Several members of the new series are highly potent and selective binders of rat and human H(3) receptors and display inverse agonism at the human H(3) receptor. Compound 5n exhibited promising rat pharmacokinetic properties and demonstrated functional antagonism of the H(3) receptor in an in-vivo pharmacological model.  相似文献   
55.
56.

Background

Genome sequences, now available for most pathogens, hold promise for the rational design of new therapies. However, biological resources for genome-scale identification of gene function (notably genes involved in pathogenesis) and/or genes essential for cell viability, which are necessary to achieve this goal, are often sorely lacking. This holds true for Neisseria meningitidis, one of the most feared human bacterial pathogens that causes meningitis and septicemia.

Results

By determining and manually annotating the complete genome sequence of a serogroup C clinical isolate of N. meningitidis (strain 8013) and assembling a library of defined mutants in up to 60% of its non-essential genes, we have created NeMeSys, a biological resource for Neisseria meningitidis systematic functional analysis. To further enhance the versatility of this toolbox, we have manually (re)annotated eight publicly available Neisseria genome sequences and stored all these data in a publicly accessible online database. The potential of NeMeSys for narrowing the gap between sequence and function is illustrated in several ways, notably by performing a functional genomics analysis of the biogenesis of type IV pili, one of the most widespread virulence factors in bacteria, and by identifying through comparative genomics a complete biochemical pathway (for sulfur metabolism) that may potentially be important for nasopharyngeal colonization.

Conclusions

By improving our capacity to understand gene function in an important human pathogen, NeMeSys is expected to contribute to the ongoing efforts aimed at understanding a prokaryotic cell comprehensively and eventually to the design of new therapies.  相似文献   
57.

Background

Next generation sequencing (NGS) platforms are currently being utilized for targeted sequencing of candidate genes or genomic intervals to perform sequence-based association studies. To evaluate these platforms for this application, we analyzed human sequence generated by the Roche 454, Illumina GA, and the ABI SOLiD technologies for the same 260 kb in four individuals.

Results

Local sequence characteristics contribute to systematic variability in sequence coverage (>100-fold difference in per-base coverage), resulting in patterns for each NGS technology that are highly correlated between samples. A comparison of the base calls to 88 kb of overlapping ABI 3730xL Sanger sequence generated for the same samples showed that the NGS platforms all have high sensitivity, identifying >95% of variant sites. At high coverage, depth base calling errors are systematic, resulting from local sequence contexts; as the coverage is lowered additional 'random sampling' errors in base calling occur.

Conclusions

Our study provides important insights into systematic biases and data variability that need to be considered when utilizing NGS platforms for population targeted sequencing studies.  相似文献   
58.
59.
The role of alpha-glucosidase in germinating barley grains   总被引:1,自引:0,他引:1  
The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process.  相似文献   
60.
Autophagy has been established as a player in host defense against viruses. The mechanisms by which the host induces autophagy during infection are diverse. In the case of HSV type 1 (HSV-1), dsRNA-dependent protein kinase is essential for induction of autophagy in fibroblasts through phosphorylation of eukaryotic initiation factor 2α (eIF2α). HSV-1 counteracts autophagy via ICP34.5, which dephosphorylates eIF2α and inhibits Beclin 1. Investigation of autophagy during HSV-1 infection has largely been conducted in permissive cells, but recent work suggests the existence of a eIF2α-independent autophagy-inducing pathway in nonpermissive cells. To clarify and further characterize the existence of a novel autophagy-inducing pathway in nonpermissive cells, we examined different HSV and cellular components in murine myeloid cells for their role in autophagy. We demonstrate that HSV-1-induced autophagy does not correlate with phosphorylation of eIF2α, is independent of functional dsRNA-dependent protein kinase, and is not antagonized by ICP34.5. Autophagy was activated independent of viral gene expression, but required viral entry. Importantly, we found that the presence of genomic DNA in the virion was essential for induction of autophagy and, conversely, that transfection of HSV-derived DNA induced microtubule-associated protein 1 L chain II formation, a marker of autophagy. This occurred through a mechanism dependent on stimulator of IFN genes, an essential component for the IFN response to intracellular DNA. Finally, we observed that HSV-1 DNA was present in the cytosol devoid of capsid material following HSV-1 infection of dendritic cells. Thus, our data suggest that HSV-1 genomic DNA induces autophagy in nonpermissive cells in a stimulator of IFN gene-dependent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号