首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   41篇
  488篇
  2023年   2篇
  2022年   4篇
  2021年   13篇
  2020年   1篇
  2019年   10篇
  2018年   7篇
  2017年   10篇
  2016年   15篇
  2015年   29篇
  2014年   32篇
  2013年   31篇
  2012年   51篇
  2011年   34篇
  2010年   27篇
  2009年   14篇
  2008年   28篇
  2007年   26篇
  2006年   24篇
  2005年   21篇
  2004年   18篇
  2003年   22篇
  2002年   22篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1974年   1篇
  1966年   1篇
排序方式: 共有488条查询结果,搜索用时 31 毫秒
31.
We initially identified lens epithelium-derived growth factor/p75 (LEDGF/p75) as a binding partner of human immunodeficiency virus type 1 (HIV-1) integrase. To investigate the role of LEDGF/p75 in HIV replication and its potential as a new antiviral target, we stably overexpressed two different fragments containing the integrase binding domain (IBD) of LEDGF/p75 fused to enhanced green fluorescent protein (eGFP). HIV-1 replication was severely inhibited by overexpression of the eGFP-IBD fusion proteins, while no inhibition was observed in cell lines overexpressing the interaction-deficient D366A mutant. Quantitative PCR pinpointed the block to the integration step, whereas nuclear import was not affected. Competition of the IBD fusion proteins with endogenous LEDGF/p75 for binding to integrase led to a potent defect in HIV-1 replication in both HeLaP4- and MT-4-derived cell lines. A previously described diketo acid-resistant HIV-1 strain remained fully susceptible to inhibition, suggesting that this strategy will also work in patients who harbor strains resistant to the current experimental integrase inhibitors. These data support LEDGF/p75 as an important cofactor for HIV replication and provide proof of concept for the LEDGF/p75-integrase interaction as a novel target for treating HIV-1 infection.  相似文献   
32.
33.
34.
Although LEDGF/p75 is believed to act as a cellular cofactor of lentiviral integration by tethering integrase (IN) to chromatin, there is no good in vitro model to analyze this functionality. We designed an AlphaScreen assay to study how LEDGF/p75 modulates the interaction of human immunodeficiency virus type 1 IN with DNA. IN bound with similar affinity to DNA mimicking the long terminal repeat or to random DNA. While LEDGF/p75 bound DNA strongly, a mutant of LEDGF/p75 with compromised nuclear localization signal (NLS)/AT hook interacted weakly, and the LEDGF/p75 PWWP domain did not interact, corroborating previous reports on the role of NLS and AT hooks in charge-dependent DNA binding. LEDGF/p75 stimulated IN binding to DNA 10-fold to 30-fold. Stimulation of IN-DNA binding required a direct interaction between IN and the C-terminus of LEDGF/p75. Addition of either the C-terminus of LEDGF/p75 (amino acids 325-530) or LEDGF/p75 mutated in the NLS/AT hooks interfered with IN binding to DNA. Our results are consistent with an in vitro model of LEDGF/p75-mediated tethering of IN to DNA. The inhibition of IN-DNA interaction by the LEDGF/p75 C-terminus may provide a novel strategy for the inhibition of HIV IN activity and may explain the potent inhibition of HIV replication observed after the overexpression of C-terminal fragments in cell culture.  相似文献   
35.
Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunglobulin (Ig) domains, and the dimer interface at myomesin’s 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.  相似文献   
36.
BackgroundTo accelerate the progress towards onchocerciasis elimination, a macrofilaricidal drug that kills the adult parasite is urgently needed. Emodepside has shown macrofilaricidal activity against a variety of nematodes and is currently under clinical development for the treatment of onchocerciasis. The aims of this study were i) to characterize the population pharmacokinetic properties of emodepside, ii) to link its exposure to adverse events in healthy volunteers, and iii) to propose an optimized dosing regimen for a planned phase II study in onchocerciasis patients.Methodology / Principal findingsPlasma concentration-time profiles and adverse event data were obtained from 142 subjects enrolled in three phase I studies, including a single-dose, and a multiple-dose, dose-escalation study as well as a relative bioavailability study. Nonlinear mixed-effects modeling was used to evaluate the population pharmacokinetic properties of emodepside. Logistic regression modeling was used to link exposure to drug-related treatment-emergent adverse events (TEAEs). Emodepside pharmacokinetics were well described by a transit-absorption model, followed by a 3-compartment disposition model. Body weight was included as an allometric function and both food and formulation had a significant impact on absorption rate and relative bioavailability. All drug-related TEAEs were transient, and mild or moderate in severity. An increase in peak plasma concentration was associated with an increase in the odds of experiencing a drug-related TEAE of interest.Conclusions/SignificancePharmacokinetic modeling and simulation was used to derive an optimized, body weight-based dosing regimen, which allows for achievement of extended emodepside exposures above target concentrations while maintaining acceptable tolerability margins.  相似文献   
37.
38.
Background aimsInvasive fungal infections, in particular, infections caused by Candida, Aspergillus and mucormycetes, are a major cause of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation. Adoptive transfer of donor-derived anti-fungal T cells shows promise to restore immunity and to offer a cure. Because T cells recognize only specific epitopes, the low rate of patients in which the causal fungal pathogen can be identified and the considerable number of patients with co-infection with several genera or species of fungi significantly limit the application of adoptive immunotherapy.MethodsUsing the interferon-γ secretion assay, we isolated multi-specific human anti-fungal T cells after simultaneous stimulation with cellular extracts of Aspergillus fumigatus, Candida albicans and Rhizopus oryzae. Cells were phenotypically and functionally characterized by flow cytometry.ResultsOf a total of 1.1 × 109 peripheral blood mononuclear cells, a median number of 5.2 × 107 CD3+CD4+ T cells was generated within 12 days. This cell population consisted of activated memory TH1 cells and reproducibly responded to a multitude of Aspergillus spp., Candida spp. and mucormycetes with interferon-γ production. On re-stimulation, the generated T cells proliferated and enhanced anti-fungal activity of phagocytes and showed reduced alloreactivity compared with the original cell fraction.ConclusionsOur rapid and simple method of simultaneously generating functionally active multi-specific T cells that recognize a wide variety of medically relevant fungi may form the basis for future clinical trials investigating adoptive immunotherapy in allogeneic hematopoietic stem cell transplantation recipients with invasive fungal infection.  相似文献   
39.
The present study aimed at analyzing the odor properties of a group of physiological human metabolites of the odorant 1,8‐cineole: 2,3‐dehydro‐, α2,3‐epoxy‐, α/β2‐hydroxy‐, α3‐hydroxy‐, 4‐hydroxy‐, 7‐hydroxy‐, 9‐hydroxy‐, 2‐oxo‐, and 3‐oxo‐1,8‐cineole. These metabolites constitute a group of structurally closely related molecules, which differ mainly in nature and position of O‐containing functional groups. They thus offer the possibility to correlate odor properties with molecular structure, i.e., to establish structure? odor relationships of compounds that are biologically generated from a potent odorant as parent substance. Generally, the metabolites preserved the eucalyptus‐like odor quality of 1,8‐cineole but showed additional odor notes such as sweet, citrus‐like, plastic‐like, earthy, musty, and faecal, which made them distinguishable. The individual enantiomers of chiral molecules also exhibited different odors. With the exception of 2,3‐dehydro‐1,8‐cineole, all metabolites showed a highly decreased odor threshold in comparison to 1,8‐cineole. The determination of odor qualities and odor thresholds was accomplished by gas chromatography/olfactometry (GC/O) on achiral and chiral GC capillaries. The results were correlated with common theories on structure? odor relationships.  相似文献   
40.
As the molecular basis of signal propagation in the cell, proteins are regulated by perturbations, such as mechanical forces or ligand binding. The question arises how fast such a signal propagates through the protein molecular scaffold. As a first step, we have investigated numerically the dynamics of force propagation through a single (Ala) protein following a sudden increase in the stretching forces applied to its end termini. The force propagates along the backbone into the center of the chain on the picosecond scale. Both conformational and tension dynamics are found in good agreement with a coarse-grained theory of force propagation through semiflexible polymers. The speed of force propagation of 50Å ps−1 derived from these simulations is likely to determine an upper speed limit of mechanical signal transfer in allosteric proteins or molecular machines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号