首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   50篇
  2022年   2篇
  2021年   14篇
  2019年   11篇
  2018年   7篇
  2017年   12篇
  2016年   17篇
  2015年   31篇
  2014年   41篇
  2013年   36篇
  2012年   59篇
  2011年   39篇
  2010年   36篇
  2009年   15篇
  2008年   35篇
  2007年   34篇
  2006年   27篇
  2005年   25篇
  2004年   24篇
  2003年   24篇
  2002年   26篇
  2001年   6篇
  2000年   8篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1979年   4篇
  1977年   2篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1958年   1篇
  1957年   1篇
排序方式: 共有644条查询结果,搜索用时 15 毫秒
71.
Castellaniella (ex Alcaligenes) defragrans strain 65Phen mineralizes monoterpenes in the absence of oxygen. Soluble cell extracts anaerobically catalyzed the isomerization of geraniol to linalool and the dehydration of linalool to myrcene. The linalool dehydratase was present in cells grown on monoterpenes, but not if grown on acetate. We purified the novel enzyme ∼1800-fold to complete homogeneity. The native enzyme had a molecular mass of 160 kDa. Denaturing gel electrophoresis revealed one single protein band with a molecular mass of 40 kDa, which indicated a homotetramer as native conformation. The aerobically purified enzyme was anaerobically activated in the presence of 2 mm DTT. The linalool dehydratase catalyzed in vitro two reactions in both directions depending on the thermodynamic driving forces: a water secession from the tertiary alcohol linalool to the corresponding acyclic monoterpene myrcene and an isomerization of the primary allylalcohol geraniol in its stereoisomer linalool. The specific activities (Vmax) were 140 nanokatals mg−1 for the linalool dehydratase and 410 nanokatals mg−1 for the geraniol isomerase, with apparent Km values of 750 μm and 500 μm, respectively. The corresponding open reading frame was identified and revealed a precursor protein with a signal peptide for a periplasmatic location. The amino acid sequence did not affiliate with any described enzymes. We suggest naming the enzyme linalool dehydratase-isomerase according to its bifunctionality and placing it as a member of a new protein family within the hydrolyases (EC 4.2.1.X).  相似文献   
72.
Most lipid emulsions for parenteral feeding of premature infants are based on long-chain triacylglycerols (LCTs), but inclusion of medium-chain triacylglycerols (MCTs) might provide a more readily oxidizable energy source. The influence of these emulsions on fatty acid composition and metabolism was studied in 12 premature neonates, who were randomly assigned to an LCT emulsion (control) or an emulsion with a mixture of MCT and LCT (1:1). On study day 7, all infants received [13C]linoleic (LA) and [13C]alpha-linolenic acid (ALA) tracers orally. Plasma phospholipid (PL) and triacylglycerol (TG) fatty acid composition and 13C enrichments of plasma PL fatty acids were determined on day 8. After 8 days of lipid infusion, plasma TGs in the MCT/LCT group had higher contents of C8:0 (0.50 +/- 0.60% vs. 0.10 +/- 0.12%; means +/- SD) and C10:0 (0.66 +/- 0.51% vs. 0.15 +/- 0.17%) than controls. LA content of plasma PLs was slightly lower in the MCT/LCT group (16.47 +/- 1.16% vs. 18.57 +/- 2.09%), whereas long-chain polyunsaturated derivatives (LC-PUFAs) of LA and ALA tended to be higher. The tracer distributions between precursors and products (LC-PUFAs) were not significantly different between groups. Both lipid emulsions achieve similar plasma essential fatty acid (EFA) contents and similar proportional conversion of EFAs to LC-PUFAs. The MCT/LCT emulsion seems to protect EFAs and LC-PUFAs from beta-oxidation.  相似文献   
73.
ANG II applied to the interstitial space influences carbohydrate and lipid metabolism in a tissue-specific fashion. Thus endogenous ANG II may have a tonic effect on tissue metabolism that could be reversed with ANG II type 1 (AT1) receptor blockade, particularly during adrenergic stimulation. We studied 14 obese men. They were treated for 10 days with the AT1 receptor blocker irbesartan or with placebo in a double-blind and crossover fashion. At the end of each treatment period, we assessed skeletal muscle and adipose tissue metabolism using the microdialysis technique. The ethanol dilution technique was applied to follow changes in tissue blood flow. Measurements were obtained at baseline and during application of incremental isoproterenol concentrations through the microdialysis catheter. Blood pressure decreased from 133 +/- 3/84 +/- 3 to 128 +/- 3/79 +/- 2 mmHg for systolic and diastolic blood, respectively (P = 0.02 and 0.006, respectively) with AT1 receptor blockade. Isoproterenol perfusion caused a dose-dependent increase in dialysate glycerol in adipose tissue and in skeletal muscle. Irbesartan slightly reduced the isoproterenol-induced glycerol response in adipose tissue (P < 0.05 by ANOVA). Ethanol ratio, interstitial glucose supply, and lactate production in adipose tissue and skeletal muscle were similar with placebo and irbesartan. We conclude that AT1 receptor blockade in obese men does not reveal a major tonic ANG II effect on interstitial glucose supply, lipolysis, or glycolysis in skeletal muscle, either at rest or during beta-adrenergic stimulation. Endogeneous ANG II may slightly increase adipose tissue lipolysis. The mechanism may promote the redistribution of triglycerides from adipose tissue toward other organs.  相似文献   
74.
Aberrant regulation of phosphoinositide 3-kinase (PI3K) activity is implicated in various diseases such as cancer and diabetes. Thus, high-throughput screening (HTS) of small-molecule inhibitors for PI3 kinases is an appealing strategy for drug development. Despite the attractiveness of lipid kinases as drug targets, screening for inhibitors for PI3K activities has been hampered by limited assay formats adaptable for HTS. The authors describe a homogeneous, direct, and nonradioactive assay for highly sensitive detection of PI3Kalpha, beta, delta, and gamma activities, which is suitable for HTS. The assay is based on fluorescence superquenching of a conjugated polymer upon metal-ion-mediated association of phosphorylated and dye-labeled substrates. As a result of phosphorylation, quencher and polymer are brought into proximity, and fluorescent energy transfer occurs. This event can be monitored as either fluorescence quench of the polymer or as enhanced emission from the quencher. Ratiometric analysis of the wavelengths eliminates interferences from autofluorescing compounds, which are present in HTS libraries. The platform has been adapted for the 384-well microplate format and delivers Z factors of > 0.6 at substrate conversions as low as 7%. Using this assay platform, several unreported inhibitors and activators of PI3Ks were identified in an 84- compound screen.  相似文献   
75.
Alterations in DNA repair lead to genomic instability and higher risk of cancer. DNA base excision repair (BER) corrects damaged bases, apurinic sites, and single-strand DNA breaks. Here, a regulatory mechanism for DNA polymerase beta (Pol beta) is described. Pol beta was found to form a complex with the protein arginine methyltransferase 6 (PRMT6) and was specifically methylated in vitro and in vivo. Methylation of Pol beta by PRMT6 strongly stimulated DNA polymerase activity by enhancing DNA binding and processivity, while single nucleotide insertion and dRP-lyase activity were not affected. Two residues, R83 and R152, were identified in Pol beta as the sites of methylation by PRMT6. Genetic complementation of Pol beta knockout cells with R83/152K mutant revealed the importance of these residues for the cellular resistance to DNA alkylating agent. Based on our findings, we propose that PRMT6 plays a role as a regulator of BER.  相似文献   
76.
77.
Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid.  相似文献   
78.
Variously substituted indolin-2-ones were synthesized and evaluated for activity against KDR, Flt-1, FGFR-1 and PDGFR. Extension at the 5-position of the oxindole ring with ethyl piperidine (compound 7i) proved to be the most beneficial for attaining both biochemical and cellular potencies. Further optimization of 7i to balance biochemical and cellular potencies with favorable ADME/ PK properties led to the identification of 8h, a compound with a clean CYP profile, acceptable pharmacokinetic and toxicity profiles, and robust efficacy in multiple xenograft tumor models.  相似文献   
79.
80.
Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation) is initiated by glutamate extruded from astrocytes via system xc – an amino acid transporter that imports l-cystine and exports l-glutamate. Specifically, we find that depriving mixed cortical cell cultures of glucose for up to 8 h injures neurons, but not astrocytes. Neuronal death is prevented by ionotropic glutamate receptor antagonism and is partially sensitive to tetanus toxin. Removal of amino acids during the deprivation period prevents – whereas addition of l-cystine restores – GD-induced neuronal death, implicating the cystine/glutamate antiporter, system xc. Indeed, drugs known to inhibit system xc ameliorate GD-induced neuronal death. Further, a dramatic reduction in neuronal death is observed in chimaeric cultures consisting of neurons derived from WT (wild-type) mice plated on top of astrocytes derived from sut mice, which harbour a naturally occurring null mutation in the gene (Slc7a11) that encodes the substrate-specific light chain of system xc (xCT). Finally, enhancement of astrocytic system xc expression and function via IL-1β (interleukin-1β) exposure potentiates hypoglycaemic neuronal death, the process of which is prevented by removal of l-cystine and/or addition of system xc inhibitors. Thus, under the conditions of GD, our studies demonstrate that astrocytes, via system xc, have a direct, non-cell autonomous effect on cortical neuron survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号