首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1067篇
  免费   110篇
  2024年   2篇
  2023年   12篇
  2022年   30篇
  2021年   59篇
  2020年   24篇
  2019年   27篇
  2018年   39篇
  2017年   35篇
  2016年   57篇
  2015年   100篇
  2014年   92篇
  2013年   102篇
  2012年   119篇
  2011年   107篇
  2010年   45篇
  2009年   39篇
  2008年   37篇
  2007年   56篇
  2006年   44篇
  2005年   31篇
  2004年   27篇
  2003年   24篇
  2002年   19篇
  2001年   7篇
  2000年   7篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1931年   2篇
  1926年   1篇
  1915年   1篇
排序方式: 共有1177条查询结果,搜索用时 15 毫秒
151.
In this study, the possibility of introducing an elevated platform to a piglet pen was explored as a way of increasing available space and creating functional areas. On the platform, nine different manipulable materials were offered. In four batches, 40 weaned piglets were kept for five weeks in the two-level pen. Video recordings were taken two days per week. In the afternoon, more piglets were on the platform than in the morning or at night (7.2 ± 0.1 vs. 4.9 ± 0.1 vs. 0.6 ± 0.1 piglets/5 minutes; p < .05). The area under the platform was preferred more in the morning and at night than in the afternoon (18.5 ± 0.1 vs. 21.6 ± 0.2 vs. 12.5 ± 0.1 piglets/5 minutes; p < .05). Up to 36 piglets were counted there simultaneously, mainly in the recumbent position. On and under the platform, air velocity and ammonia concentration were within the recommended ranges. The study concluded that a two-level pen is a feasible option to increase space allowance and to create functional areas in a piglet pen.  相似文献   
152.
Phytopathogenic fungi infections induce plant defence responses that mediate changes in metabolic and signalling processes with severe consequences for plant growth and development. Sphaeropsis tip blight, induced by the endophytic fungus Sphaeropsis sapinea that spreads from stem tissues to the needles, is the most widespread disease of conifer forests causing dramatic economic losses. However, metabolic consequences of this disease on bark and wood tissues of its host are largely unexplored. Here, we show that diseased host pines experience tissue dehydration in both bark and wood. Increased cytokinin and declined indole‐3‐acetic acid levels were observed in both tissues and increased jasmonic acid and abscisic acid levels exclusively in the wood. Increased lignin contents at the expense of holo‐cellulose with declined structural biomass of the wood reflect cell wall fortification by S. sapinea infection. These changes are consistent with H2O2 accumulation in the wood, required for lignin polymerization. Accumulation of H2O2 was associated with more oxidized redox states of glutathione and ascorbate pools. These findings indicate that S. sapinea affects both phytohormone signalling and the antioxidative defence system in stem tissues of its pine host during the infection process.  相似文献   
153.
A greenhouse experiment was conducted in which two leguminous species commonly used in the Yellow River Delta for vegetation restoration, Robinia pseudoacacia and Amorpha fruticosa, were subjected to five salt treatments: 0, 50, 100, 150, and 200 mmol L?1. We aimed to determine which of the two species would be better suited for growth in a saline environment, and whether the acclimation capacity to salinity resulted from an inherently higher phenotypic plasticity. The results showed that salinity affected most growth and biomass parameters but had no effects on most leaf traits and physiological parameters of the two species. Height, relative growth rate of crown area, root biomass, and leaf mass ratio of R. pseudoacacia were reduced by higher salinity, while A. fruticosa was not affected. Chlorophyll a-to-chlorophyll b ratio and total antioxidative capacity of A. fruticosa increased with higher salinity, whereas those of R. pseudoacacia remained unchanged. Root mass ratio and vitamin C concentration of both species were not affected by salinity, whereas vitamin C concentration of A. fruticosa was higher than that of R. pseudoacacia. The root-to-shoot ratio of A. fruticosa was higher than that of R. pseudoacacia in most salt treatments. Of all leaf traits, only leaf area differed between treatments. R. pseudoacacia generally exhibited a greater plasticity than A. fruticosa in response to salinity, but A. fruticosa was more resistant to the higher salinities than R. pseudoacacia, and was thus a better candidate for vegetation restoration in saline areas.  相似文献   
154.
155.
156.
The maturation of tRNA precursors involves the 5′ cleavage of leader sequences by an essential endonuclease called RNase P. Beyond the ancestral ribonucleoprotein (RNP) RNase P, a second type of RNase P called PRORP (protein‐only RNase P) evolved in eukaryotes. The current view on the distribution of RNase P in cells is that multiple RNPs, multiple PRORPs or a combination of both, perform specialised RNase P activities in the different compartments where gene expression occurs. Here, we identify a single gene encoding PRORP in the green alga Chlamydomonas reinhardtii while no RNP is found. We show that its product, CrPRORP, is triple‐localised to mitochondria, the chloroplast and the nucleus. Its downregulation results in impaired tRNA biogenesis in both organelles and the nucleus. CrPRORP, as a single‐subunit RNase P for an entire organism, makes up the most compact and versatile RNase P machinery described in either prokaryotes or eukaryotes.  相似文献   
157.
158.
159.
The environmental conditions in the new ranges of introduced plant species are often different from the conditions in their native ranges, and invasive plant species have been assumed to adapt to different environmental conditions by rapid ecological evolution in the invasive range after the introduction. Another interpretation of the change in plant traits after their introduction, however, is ecological fitting, which is based on the inherently high phenotypic plasticity of the species rather than on evolution. The Mediterranean haplotype M1 lineage of the wetland grass Phragmites australis was introduced to the coastal wetlands along the Gulf Coast of North America, where it is exposed to a different climate compared to its original range. The climate in the native range is arid or temperate with dry and hot summers, whereas the climate in the introduced range is warmer and has a higher and more uniform precipitation than that in the native range. This warmer and more humid environment is likely to pose different selection pressures to the plants in the introduced range and thus cause rapid evolutionary change and phenotypic differentiation in the introduced range. Here, we compared phenotypic traits of the M1 lineage from the native and introduced ranges in a common garden experiment to study the processes assisting the successful spread in the introduced range. Overall, the native and introduced groups were similar, but we detected a few phenotypic traits that diverged. Ecological fitting could be the fundamental mechanism by which the P. australis M1 lineage survives and spreads in the introduced Gulf Coast region. However, further research is needed to assess how the diverging traits observed in our study in Denmark (lower photosynthetic rates, lower chlorophylls concentration and higher leaf K concentration for the introduced than for the native genotypes) are expressed in the two ranges.  相似文献   
160.
GDP-mannose pyrophosphorylase (GMPase, EC 2.7.7.22) catalyses the synthesis of GDP-D-mannose and represents the first committed step in the formation of all guanosin-containing sugar nucleotides found in plants which are precursors for cell wall biosynthesis and, probably more important, the synthesis of ascorbate. A full-length cDNA encoding GMPase from S. tuberosum was isolated. Transgenic potato plants were generated in which the GMPase cDNA was introduced in antisense orientation to the 35S promoter. Transformants with reduced GMPase activity were selected. Transgenic plants were indistinguishable from the wild-type when held under tissue culture conditions, however, a major change was seen 10 weeks after transfer into soil. Transgenic plants showed dark spots on leaf veins and stems with this phenotype developing from the bottom to the top of the plant. In case of the line with the strongest reduction, all aerial parts finally dried out after 3 months in soil, in contrast to the wild-type plants which did not start to senesce at this time. This coincides with a reduction of ascorbate contents in the transgenic plants, which is in agreement with the recently proposed pathway of ascorbate biosynthesis. Furthermore, leaf cell walls of the transgenic potato plants had mannose contents that were reduced to 30-50% of the wild-type levels, whereas the composition of tuber cell walls was unchanged. The glycosylation pattern of proteins was unaffected by GMPase inhibition, as studied by affinoblot analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号