首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1035篇
  免费   109篇
  1144篇
  2024年   2篇
  2023年   12篇
  2022年   30篇
  2021年   60篇
  2020年   24篇
  2019年   26篇
  2018年   37篇
  2017年   34篇
  2016年   55篇
  2015年   97篇
  2014年   85篇
  2013年   96篇
  2012年   117篇
  2011年   103篇
  2010年   44篇
  2009年   35篇
  2008年   34篇
  2007年   53篇
  2006年   41篇
  2005年   29篇
  2004年   27篇
  2003年   23篇
  2002年   19篇
  2001年   5篇
  2000年   6篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1941年   1篇
  1935年   1篇
  1934年   1篇
  1933年   1篇
  1931年   2篇
  1926年   1篇
  1915年   1篇
排序方式: 共有1144条查询结果,搜索用时 15 毫秒
21.
LAT2 (system L amino acid transporter 2) is composed of the subunits Slc7a8/Lat2 and Slc3a2/4F2hc. This transporter is highly expressed along the basolateral membranes of absorptive epithelia in kidney and small intestine, but is also abundant in the brain. Lat2 is an energy-independent exchanger of neutral amino acids, and was shown to transport thyroid hormones. We report in the present paper that targeted inactivation of Slc7a8 leads to increased urinary loss of small neutral amino acids. Development and growth of Slc7a8(-/-) mice appears normal, suggesting functional compensation of neutral amino acid transport by alternative transporters in kidney, intestine and placenta. Movement co-ordination is slightly impaired in mutant mice, although cerebellar development and structure remained inconspicuous. Circulating thyroid hormones, thyrotropin and thyroid hormone-responsive genes remained unchanged in Slc7a8(-/-) mice, possibly because of functional compensation by the thyroid hormone transporter Mct8 (monocarboxylate transporter 8), which is co-expressed in many cell types. The reason for the mild neurological phenotype remains unresolved.  相似文献   
22.
Tight control of translation is fundamental for eukaryotic cells, and deregulation of proteins implicated contributes to numerous human diseases. The neurodegenerative disorder spinocerebellar ataxia type 2 is caused by a trinucleotide expansion in the SCA2 gene encoding a lengthened polyglutamine stretch in the gene product ataxin-2, which seems to be implicated in cellular RNA-processing pathways and translational regulation. Here, we substantiate a function of ataxin-2 in such pathways by demonstrating that ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6, a component of P-bodies and stress granules, representing cellular structures of mRNA triage. We discovered that altered ataxin-2 levels interfere with the assembly of stress granules and cellular P-body structures. Moreover, ataxin-2 regulates the intracellular concentration of its interaction partner, the poly(A)-binding protein, another stress granule component and a key factor for translational control. Thus, our data imply that the cellular ataxin-2 concentration is important for the assembly of stress granules and P-bodies, which are main compartments for regulating and controlling mRNA degradation, stability, and translation.  相似文献   
23.
The trichothecene mycotoxin T-2 toxin is a common contaminant of food and feed and is also present in processed cereal derived products. Cytotoxic effects of T-2 toxin and its main metabolite HT-2 toxin are already well described with apoptosis being a major mechanism of action. However, effects on the central nervous system were until now only reported rarely. In this study we investigated the effects of T-2 and HT-2 toxin on the blood-brain barrier (BBB) in vitro. Besides strong cytotoxic effects on the BBB as determined by the CCK-8 assay, impairment of the barrier function starting at low nanomolar concentrations were observed for T-2 toxin. HT-2 toxin, however, caused barrier disruption at higher concentrations compared to T-2 toxin. Further, the influence on the tight junction protein occludin was studied and permeability of both toxins across the BBB was detected when applied from the apical (blood) or the basolateral (brain) side respectively. These results clearly indicate the ability of both toxins to enter the brain via the BBB.  相似文献   
24.
The timing of flowering is pivotal for maximizing reproductive success under fluctuating environmental conditions. Flowering time is tightly controlled by complex genetic networks that integrate endogenous and exogenous cues, such as light, temperature, photoperiod, and hormones. Here, we show that AGAMOUS-LIKE16 (AGL16) and its negative regulator microRNA824 (miR824) control flowering time in Arabidopsis thaliana. Knockout of AGL16 effectively accelerates flowering in nonvernalized Col-FRI, in which the floral inhibitor FLOWERING LOCUS C (FLC) is strongly expressed, but shows no effect if plants are vernalized or grown in short days. Alteration of AGL16 expression levels by manipulating miR824 abundance influences the timing of flowering quantitatively, depending on the expression level and number of functional FLC alleles. The effect of AGL16 is fully dependent on the presence of FLOWERING LOCUS T (FT). Further experiments show that AGL16 can interact directly with SHORT VEGETATIVE PHASE and indirectly with FLC, two proteins that form a complex to repress expression of FT. Our data reveal that miR824 and AGL16 modulate the extent of flowering time repression in a long-day photoperiod.  相似文献   
25.
Highlights? Cardiac laterality involves Nodal modulating an antimotogenic Bmp activity ? The Nodal target Hyaluronan synthase 2 unilaterally dampens Bmp signaling activity ? Nonmuscle myosin II is positively regulated by Bmp within cardiac tissue ? High levels of nonmuscle myosin II activity reduce cardiac cell motility  相似文献   
26.
27.
Journal of Mathematical Biology - In this work we prove occurrence of a super-critical Hopf bifurcation in a model of white blood cell formation structured by three maturation stages. We provide an...  相似文献   
28.
Bacterial degradation pathways of fuel oxygenates such as methyl tert-butyl and tert-amyl methyl ether (MTBE and TAME, respectively) have already been studied in some detail. However, many of the involved enzymes are still unknown, and possible side reactions have not yet been considered. In Aquincola tertiaricarbonis L108, Methylibium petroleiphilum PM1, and Methylibium sp. strain R8, we have now detected volatile hydrocarbons as by-products of the degradation of the tert-alkyl ether metabolites tert-butyl and tert-amyl alcohol (TBA and TAA, respectively). The alkene isobutene was formed only during TBA catabolism, while the beta and gamma isomers of isoamylene were produced only during TAA conversion. Both tert-alkyl alcohol degradation and alkene production were strictly oxygen dependent. However, the relative contribution of the dehydration reaction to total alcohol conversion increased with decreasing oxygen concentrations. In resting-cell experiments where the headspace oxygen content was adjusted to less than 2%, more than 50% of the TAA was converted to isoamylene. Isobutene formation from TBA was about 20-fold lower, reaching up to 4% alcohol turnover at low oxygen concentrations. It is likely that the putative tert-alkyl alcohol monooxygenase MdpJ, belonging to the Rieske nonheme mononuclear iron enzymes and found in all three strains tested, or an associated enzymatic step catalyzed the unusual elimination reaction. This was also supported by the detection of mdpJK genes in MTBE-degrading and isobutene-emitting enrichment cultures obtained from two treatment ponds operating at Leuna, Germany. The possible use of alkene formation as an easy-to-measure indicator of aerobic fuel oxygenate biodegradation in contaminated aquifers is discussed.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号