首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1020篇
  免费   108篇
  2024年   2篇
  2023年   15篇
  2022年   32篇
  2021年   59篇
  2020年   24篇
  2019年   27篇
  2018年   37篇
  2017年   35篇
  2016年   53篇
  2015年   98篇
  2014年   83篇
  2013年   96篇
  2012年   115篇
  2011年   104篇
  2010年   44篇
  2009年   35篇
  2008年   34篇
  2007年   53篇
  2006年   41篇
  2005年   30篇
  2004年   27篇
  2003年   23篇
  2002年   20篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1931年   2篇
  1926年   1篇
  1915年   1篇
排序方式: 共有1128条查询结果,搜索用时 15 毫秒
71.
72.
Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48- and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.  相似文献   
73.
Consumer complaints against the blandness of modern lean meat and the frequent reference to the more strongly flavored meat that was available years ago have prompted reconsideration of high fat-depositing typical pig breeds. Casertana and Large White pig breeds are characterized by a different tendency toward fat accumulation as they exhibit opposite genetic and physiological traits with respect to the energy metabolism. These physiological differences were investigated in longissimus lumborum muscles through proteomics (2-DE, MS/MS) and microarray approaches. Data were analyzed for pathway and network analyses, as well as GO term enrichment of biological functions. As a result, Casertana showed a greater amount of proteins involved in glycolitic metabolism and mainly rely on fast-mobilizable energy sources. Large White overexpressed cell cycle and skeletal muscle growth related genes. Metabolic behavior and other implications are discussed.  相似文献   
74.
Plastids of diatoms and related algae evolved by secondary endocytobiosis, the uptake of a eukaryotic alga into a eukaryotic host cell and its subsequent reduction into an organelle. As a result diatom plastids are surrounded by four membranes. Protein targeting of nucleus encoded plastid proteins across these membranes depends on N-terminal bipartite presequences consisting of a signal and a transit peptide-like domain. Diatoms and cryptophytes share a conserved amino acid motif of unknown function at the cleavage site of the signal peptides (ASAFAP), which is particularly important for successful plastid targeting. Screening genomic databases we found that in rare cases the very conserved phenylalanine within the motif may be replaced by tryptophan, tyrosine or leucine. To test such unusual presequences for functionality and to better understand the role of the motif and putative receptor proteins involved in targeting, we constructed presequence:GFP fusion proteins with or without modifications of the “ASAFAP”-motif and expressed them in the diatom Phaeodactylum tricornutum. In this comprehensive mutational analysis we found that only the aromatic amino acids phenylalanine, tryptophan, tyrosine and the bulky amino acid leucine at the +1 position of the predicted signal peptidase cleavage site allow plastid import, as expected from the sequence comparison of native plastid targeting presequences of P. tricornutum and the cryptophyte Guillardia theta. Deletions within the signal peptide domains also impaired plastid import, showing that the presence of F at the N-terminus of the transit peptide together with a cleavable signal peptide is crucial for plastid import. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. Gruber and S. Vugrinec contributed equally to this work.  相似文献   
75.
The Ly49A NK cell receptor interacts with MHC class I (MHC-I) molecules on target cells and negatively regulates NK cell-mediated target cell lysis. We have recently shown that the MHC-I ligand-binding capacity of the Ly49A NK cell receptor is controlled by the NK cells' own MHC-I. To see whether this property was unique to Ly49A, we have investigated the binding of soluble MHC-I multimers to the Ly49 family receptors expressed in MHC-I-deficient and -sufficient C57BL/6 mice. In this study, we confirm the binding of classical MHC-I to the inhibitory Ly49A, C and I receptors, and demonstrate that detectable MHC-I binding to MHC-I-deficient NK cells is exclusively mediated by these three receptors. We did not detect significant multimer binding to stably transfected or NK cell-expressed Ly49D, E, F, G, and H receptors. Yet, we identified the more distantly related Ly49B and Ly49Q, which are not expressed by NK cells, as two novel MHC-I receptors in mice. Furthermore, we show using MHC-I-sufficient mice that the NK cells' own MHC-I significantly masks the Ly49A and Ly49C, but not the Ly49I receptor. Nevertheless, Ly49I was partly masked on transfected tumor cells, suggesting that the structure of Ly49I is compatible in principal with cis binding of MHC-I. Finally, masking of Ly49Q by cis MHC-I was minor, whereas masking of Ly49B was not detected. These data significantly extend the MHC-I specificity of Ly49 family receptors and show that the accessibility of most, but not all, MHC-I-binding Ly49 receptors is modulated by the expression of MHC-I in cis.  相似文献   
76.
Cyclic diguanosine monophosphate is a bacterial second messenger involved in a lifestyle switch from single cells to biofilm formation. Atomistic simulations are used to characterize inhibited diguanylate cyclase (DGC) PleD with emphasis on the feedback inhibition mechanism. Normal-mode calculations show a rigidification particularly in both the inhibition site and the active site of the protein upon ligand binding. Extensive molecular dynamics simulations in explicit solvent and analysis of the dynamical cross-correlation maps suggest two distinct coupling pathways between the active and the inhibition site: direct information transfer either through the β-strands β2 and β3 of the DGC domain (pathway I) or via the disordered regions connecting domains D2 and DGC (pathway II). In addition, dynamical cross-correlation maps show differences in the correlation between neighboring domains upon ligand binding and upon the point mutation R390A. The correlated motions between domains D1 and D2, which form the dimerization interface, are stronger for free PleD. Complementary to the experimentally observed short-range interactions in ligated PleD, the present work also characterizes the long-range, delocalized interactions between domains that are important for understanding activation and allosteric control of the protein. Based on the results, experimental characterization of the point mutant R353 and of the double mutant N357/H394 is proposed to differentiate between pathways I and II.  相似文献   
77.
Tight control of translation is fundamental for eukaryotic cells, and deregulation of proteins implicated contributes to numerous human diseases. The neurodegenerative disorder spinocerebellar ataxia type 2 is caused by a trinucleotide expansion in the SCA2 gene encoding a lengthened polyglutamine stretch in the gene product ataxin-2, which seems to be implicated in cellular RNA-processing pathways and translational regulation. Here, we substantiate a function of ataxin-2 in such pathways by demonstrating that ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6, a component of P-bodies and stress granules, representing cellular structures of mRNA triage. We discovered that altered ataxin-2 levels interfere with the assembly of stress granules and cellular P-body structures. Moreover, ataxin-2 regulates the intracellular concentration of its interaction partner, the poly(A)-binding protein, another stress granule component and a key factor for translational control. Thus, our data imply that the cellular ataxin-2 concentration is important for the assembly of stress granules and P-bodies, which are main compartments for regulating and controlling mRNA degradation, stability, and translation.  相似文献   
78.
79.
Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号