首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3273篇
  免费   238篇
  国内免费   1篇
  3512篇
  2022年   22篇
  2021年   37篇
  2020年   29篇
  2019年   25篇
  2018年   40篇
  2017年   45篇
  2016年   57篇
  2015年   113篇
  2014年   111篇
  2013年   137篇
  2012年   179篇
  2011年   172篇
  2010年   104篇
  2009年   102篇
  2008年   130篇
  2007年   158篇
  2006年   124篇
  2005年   160篇
  2004年   144篇
  2003年   128篇
  2002年   112篇
  2001年   45篇
  2000年   31篇
  1999年   30篇
  1998年   32篇
  1997年   24篇
  1996年   34篇
  1995年   32篇
  1994年   33篇
  1993年   32篇
  1992年   34篇
  1991年   29篇
  1990年   35篇
  1989年   30篇
  1988年   37篇
  1987年   21篇
  1986年   30篇
  1985年   40篇
  1984年   40篇
  1983年   24篇
  1982年   20篇
  1981年   19篇
  1980年   18篇
  1979年   22篇
  1978年   19篇
  1977年   19篇
  1974年   17篇
  1971年   17篇
  1967年   17篇
  1852年   19篇
排序方式: 共有3512条查询结果,搜索用时 12 毫秒
181.
182.
Carcinoma invasion is a complex process regulated by genetic and epigenetic factors as well. A relevant supportive condition for cancer cell migration is the reorganization of the extracellular matrix (ECM), which is realized in an orchestrated multicellular manner including carcinoma cells and stromal fibroblasts. An important key player in the process of ECM reorganization is Tenascin-C (Tn-C). The molecule occurs as different isoforms generated by alternative splicing and de novo glycosylation. Large variants of Tn-C are abundantly re-expressed in the invasive front of many carcinoma types. A special role for initiating migration and accompanied epithelial to mesenchymal transition has been suggested. Here, we review the current knowledge concerning the tumor biological importance of Tn-C, the synthesis and alternative splicing during the invasive process in general, and give an overview on the impact of Tn-C in urothelial carcinoma of the urinary bladder (UBC) and oral squamous cell carcinoma (OSCC).  相似文献   
183.
Summary (1) The fine structure of the cercal campaniform sensilla and epidermal cells of Gryllus bimaculatus Deg. (Saltatoria, Gryllidae) was examined, and the ecdysteroid level was monitored throughout the last larval instar. (2) The epidermal cells show changes in shape, cytoplasmic inclusions and differentiation of the apical cell membrane, coupled to the phases of buildup and breakdown of the (cercus) cuticle. (3) The imaginal epicuticle of the epidermal cells begins to form later (by about approximately 6 h) than that of the campaniform sensilla. (4) The campaniform sensilla were studied with respect to (a) the morphogenesis of the cuticular apparatus, (b) the inclusion of phenol oxidases in the cuticular apparatus, and (c) changes in the sensory apparatus preparatory to molting. (5) After apolysis the folding of the tormogen-cell wall into microvilli transiently disappears. Microvilli re-form shortly before imaginai ecdysis, and at the same time an outer receptor-lymph space develops. The role of the tormogen-cell plaques is discussed. (6) The levels of - and -ecdysone were determined separately by radioimmunoassay. (7) At the beginning of the instar the hormone level, especially that of -ecdysone, falls. Prior to apolysis, the concentration of -ecdysone rises, reaching an intermediate peak after apolysis is complete. The maximum hormone concentration (approximately 2,000 ng/g) is reached after the cuticulin layer is deposited, primarily due to the increase in -ecdysone. While the proecdysial cuticle is forming, the hormone titer is reduced; at this time -ecdysone is its chief component. (8) The identification of the ecdysteroids monitored by radioimmunoassay was confirmed by gas chromatography.This paper is dedicated to Professor H. Risler on the occasion of his 65th birthdaySupported by the Deutsche Forschungsgemeinschaft  相似文献   
184.
185.
186.
The main carotenoid of Flavobacterium strain R1560 has been identified as (3R,3R)-zeaxanthin. Also present were small amounts of 15-cis-phytoene, phytofluene, -carotene (7,8,7,8-tetrahydro-, -carotene plus 7,8,11,12-tetrahydro-, -carotene), neurosporene, lycopene, -zeacarotene, -carotene, -carotene, -cryptoxanthin, rubixanthin, 3-hydroxy--zeacarotene and several apo-carotenals. Zeaxanthin production was inhibited by nicotine (10 mM), and lycopene and rubixanthin accumulated. The biosynthesis of zeaxanthin is discussed in terms of pathways and also of half-molecule reaction sequences. The presence of zeaxanthin may be a characteristic of a group of Flavobacterium species, and may thus be useful in the taxonomic classification of these organisms.  相似文献   
187.
In this paper we present a model for erythropoiesis under the basic assumption that sufficient iron availability is guaranteed. An extension of the model including a sub-model for the iron dynamics in the body is topic of present research efforts. The model gives excellent results for a number of important situations: recovery of the red blood cell mass after blood donation, adaptation of the number of red blood cells to changes in the altitude of residence and, most important, the reaction of the body to different administration regimens of erythropoiesis stimulating agents, as for instance in the case of pre-surgical administration of Epoetin-α. The simulation results concerning the last item show that choosing an appropriate administration regimen can reduce the total amount of the administered drug considerably. The core of the model consists of structured population equations for the different cell populations which are considered. A key feature of the model is the incorporation of neocytolysis.  相似文献   
188.
189.
The envelope protein E of flaviviruses mediates both receptor-binding and membrane fusion. At the virion surface, 180 copies of E are tightly packed and organized in a herringbone-like icosahedral structure, whereas in noninfectious subviral particles, 60 copies are arranged in a T=1 icosahedral symmetry. In both cases, the basic building block is an E dimer which exposes the binding sites for neutralizing antibodies at its surface. It was the objective of our study to assess the dependence of the antigenic structure of E on its quaternary arrangement, i.e., as part of virions, recombinant subviral particles, or soluble dimers. For this purpose, we used a panel of 11 E protein-specific neutralizing monoclonal antibodies, mapped to distinct epitopes in each of the three E protein domains, and studied their reactivity with the different soluble and particulate forms of tick-borne encephalitis virus E protein under nondenaturing immunoassay conditions. Significant differences in the reactivities with these forms were observed that could be related to (i) limited access of certain epitopes at the virion surface; (ii) limited occupancy of epitopes in virions due to steric hindrance between antibodies; (iii) differences in the avidity to soluble forms compared to the virion, presumably related to the flexibility of E at its domain junctions; and (iv) modulations of the external E protein surface through interactions with its stem-anchor structure. We have thus identified several important factors that influence the antigenicity of the flavivirus E protein and have an impact on the interaction with neutralizing antibodies.Flaviviruses form a genus in the family Flaviviridae (52) and comprise a number of important human pathogens such as yellow fever, dengue, Japanese encephalitis, West Nile, and tick-borne encephalitis (TBE) viruses (30). They are small, enveloped viruses with only three structural proteins, designated C (capsid), M (membrane), and E (envelope). The E protein is oriented parallel to the viral membrane and forms a head-to-tail homodimeric complex (Fig. 1A and B). The structure of the E ectodomain (soluble E [sE])—consisting of about 400 amino acids and lacking the 100 C-terminal amino acids (including the so-called stem and two transmembrane helices)—has been determined by X-ray crystallography for several flaviviruses (Fig. (Fig.1A)1A) (25, 34, 36, 38, 44, 55). Both of the essential entry functions—receptor-binding and membrane fusion after uptake by receptor-mediated endocytosis—are mediated by E, which is therefore the primary target for virus-neutralizing antibodies (11, 42, 43, 45).Open in a separate windowFIG. 1.Structures and schematic representations of the TBE virus E protein, virions, and RSPs. In all panels, DI, DII, and DIII of the E protein are shown in red, yellow, and blue, respectively, and the fusion peptide (FP) is in orange. (A) Ribbon diagram of the sE dimer (top view). (B) Schematic of the full-length E dimer in a top view (upper panel) and side view (lower panel). The position of the two transmembrane helices of the membrane anchor and the two helices of the stem are based on Zhang et al. (54) and are shown in green and purple, respectively. (C) Pseudo-atomic structure of the virion based on cryo-EM reconstructions of dengue and West Nile viruses (27, 37, 54). One of the 30 rafts, each consisting of three parallel dimers, is highlighted. DIIIs of three monomers belonging to one icosahedral asymmetric unit are labeled by white stars. (D) Pseudo-atomic structure of RSP based on cryo-EM reconstructions (12).As revealed by cryo-electron microscopy (cryo-EM), mature infectious virions have smooth surfaces, comparable to a golf ball (27, 37). Their envelopes are icosahedrally symmetric and consist of a closed shell of 180 E monomers that are arranged in a herringbone-like pattern of 30 rafts of three dimers each (Fig. (Fig.1C)1C) (27). On the other hand, capsid-lacking subviral particles, which can be produced in recombinant form by the coexpression of prM and E, have a different symmetry, with 30 E dimers in a T=1 icosahedral structure (Fig. (Fig.1D)1D) (12, 49).The peculiar organization of E in virions is reminiscent of the tight packing of capsid proteins in nonenveloped viruses, for which it was shown that the native antigenic structure is strongly dependent on the intact capsid structure and not completely represented by isolated forms of capsid proteins (1, 41, 53). Such modulations of antigenic structure may be due to conformational changes in the course of packaging the capsid proteins into virions and/or to the fact that antibody binding sites at the virion surface are composed of residues that come together only through the juxtaposition of capsid proteins or neighboring protein subunits. Even in the case of spiky viral envelope proteins, the dependence of certain epitopes on the quaternary organization of the envelope glycoproteins has been described (8, 47).For flaviviruses, structural studies provide evidence for the considerable flexibility of E, especially at the junctions between the individual domains I, II, and III (DI, DII, and DIII) (7, 35, 55), suggesting that soluble forms may display differences in antigenic structure compared to those fixed in the closed envelope shell of whole virions. Furthermore, because of the tight packing of E at the virion surface, certain epitopes may be cryptic in the context of whole virus particles but accessible in soluble forms of E (40, 51).Studies on the antigenic structure of flaviviruses have used different antigen preparations including virions, recombinant subviral particles (RSPs), and soluble forms and subunits of E (10, 15-17, 32, 39, 40, 46, 49, 51), but so far no systematic comparative analysis of E in different physical forms and quaternary arrangements has been conducted. It was therefore the objective of our study, using TBE virus as a model, to investigate possible structural and/or antigenic differences between (i) soluble dimeric forms of E, including C-terminally truncated sE and detergent-solubilized full-length E (Fig. 1A and B); (ii) E in the context of whole virions (Fig. (Fig.1C);1C); and (iii) E in the context of RSPs (Fig. (Fig.1D).1D). For this purpose we used, and further characterized, a set of monoclonal antibodies (MAbs) directed to each of the three domains of E. All of these MAbs have neutralizing activity (17, 24) and therefore, by definition, react with infectious virions.Through these analyses, we demonstrate that the reactivity of several MAbs is significantly dependent on the quaternary arrangement of E and differs between virions, RSPs, and/or sE dimers. We thus provide evidence for previously unrecognized structural factors that have an impact on the antigenicity of the flavivirus E protein.  相似文献   
190.
Human‐induced changes of the environment and their possible impacts on temperate forest understory plant communities have been examined in many studies. However, the relative contribution of individual environmental factors to these changes in the herb layer is still unclear. In this study, we used vegetation survey data covering a time period of 21 years and collected from 143 permanent plots in the Northern Limestone Alps, Austria. Data on soil chemistry (49 plots), light condition (51 plots), soil temperature and moisture (four and six plots), disturbance (all plots), climate (one station in a clearing area), and airborne sulfur (S) and nitrogen (N) deposition (two forest stands) were available for analyses. We used these data together with plot mean Ellenberg indicator values in a path analysis to attribute their relative contributions to observed vegetation changes. Our analysis reveals a strong directional shift of the forest understory plant community. We found strong evidence for a recovery of the ground‐layer vegetation from acidification as response to decreased S deposition. We did not observe a community response to atmospheric N deposition, but we found a response to altered climatic conditions (thermophilization and drying). The path analysis revealed that changes in the light regime, which were related to small‐scale disturbances, had most influence on herb layer community shifts. Thermophilization and drying were identified as drivers of understory community changes independent of disturbance events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号