首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   14篇
  198篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   10篇
  2014年   5篇
  2013年   18篇
  2012年   6篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   8篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   7篇
  2001年   9篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有198条查询结果,搜索用时 44 毫秒
71.

Background

Patients with ST-elevation myocardial infarction (STEMI) not treated with primary or rescue percutaneous coronary intervention (PCI) are at risk for recurrent ischemia, especially when viability in the infarct-area is present. Therefore, an invasive strategy with PCI of the infarct-related coronary artery in patients with viability would reduce the occurrence of a composite end point of death, reinfarction, or unstable angina (UA).

Methods

Patients admitted with an (sub)acute myocardial infarction, who were not treated by primary or rescue PCI, and who were stable during the first 48 hours after the acute event, were screened for the study. Eventually, we randomly assigned 216 patients with viability (demonstrated with low-dose dobutamine echocardiography) to an invasive or a conservative strategy. In the invasive strategy stenting of the infarct-related coronary artery was intended with abciximab as adjunct treatment. Seventy-five (75) patients without viability served as registry group. The primary endpoint was the composite of death from any cause, recurrent myocardial infarction (MI) and unstable angina at one year. As secondary endpoint the need for (repeat) revascularization procedures and anginal status were recorded.

Results

The primary combined endpoint of death, recurrent MI and unstable angina was 7.5% (8/106) in the invasive group and 17.3% (19/110) in the conservative group (Hazard ratio 0.42; 95% confidence interval [CI] 0.18-0.96; p = 0.032). During follow up revascularization-procedures were performed in 6.6% (7/106) in the invasive group and 31.8% (35/110) in the conservative group (Hazard ratio 0.18; 95% CI 0.13-0.43; p < 0.0001). A low rate of recurrent ischemia was found in the non-viable group (5.4%) in comparison to the viable-conservative group (14.5%). (Hazard-ratio 0.35; 95% CI 0.17-1.00; p = 0.051).

Conclusion

We demonstrated that after acute MI (treated with thrombolysis or without reperfusion therapy) patients with viability in the infarct-area benefit from a strategy of early in-hospital stenting of the infarct-related coronary artery. This treatment results in a long-term uneventful clinical course. The study confirmed the low risk of recurrent ischemia in patients without viability.

Trial registration

ClinicalTrials.gov: NCT00149591.  相似文献   
72.
73.
We have previously described a developmentally regulated mRNA in maize that accumulates in mature embryos and is involved in a variety of stress responses in the plant. The sequence of the encoded 16 kDa protein (MA16) predicts that it is an RNA-binding protein, since it possesses a ribonucleoprotein consensus sequence-type RNA-binding domain (CS-RBD). To assess the predicted RNA binding property of the protein and as a starting point to characterize its function we have used ribohomopolymer-binding assays. Here we show that the MA16-encoded protein binds preferentially to uridine- and guanosine-rich RNAs. In light of these results a likely role for this protein in RNA metabolism during late embryogenesis and in the stress response is discussed.  相似文献   
74.
    
Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.  相似文献   
75.
Perspectives for the industrial enzymatic production of glycosides   总被引:1,自引:0,他引:1  
Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.  相似文献   
76.
Translation of middle-component RNA of cowpea mosaic virus in vitro produced two polypeptides of 95 and 105 kilodaltons (95K and 105K, respectively) with overlapping amino acid sequences, which were specifically cleaved by a protease encoded by the bottom-component RNA. The proteolytic cleavage was studied by the addition of antibodies raised against various bottom-component RNA-encoded proteins to extracts prepared from bottom-component RNA-inoculated cowpea protoplasts. Since antiserum to the 32K polypeptide efficiently inhibited the proteolytic activity of such extracts, although antiserum to VPg or to the 170K polypeptide did not, evidence was obtained which indicates that the 32K polypeptide represents the protease involved. Fractionation of proteolytically active extract by glycerol gradient centrifugation demonstrated that 32K polypeptides do not exist as free proteins but are aggregated to the bottom-component RNA-encoded 170K, 84K, 60K, or 58K polypeptides. Maximal proteolytic activity was observed for 32K polypeptides associated with 170K polypeptides, suggesting that the activity was unstable and confined to newly synthesized molecules.  相似文献   
77.
Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing.  相似文献   
78.
    
We investigated the function of ASN2, one of the three genes encoding asparagine synthetase (EC 6.3.5.4), which is the most highly expressed in vegetative leaves of Arabidopsis thaliana. Expression of ASN2 and parallel higher asparagine content in darkness suggest that leaf metabolism involves ASN2 for asparagine synthesis. In asn2‐1 knockout and asn2‐2 knockdown lines, ASN2 disruption caused a defective growth phenotype and ammonium accumulation. The asn2 mutant leaves displayed a depleted asparagine and an accumulation of alanine, GABA, pyruvate and fumarate, indicating an alanine formation from pyruvate through the GABA shunt to consume excess ammonium in the absence of asparagine synthesis. By contrast, asparagine did not contribute to photorespiratory nitrogen recycle as photosynthetic net CO2 assimilation was not significantly different between lines under both 21 and 2% O2. ASN2 was found in phloem companion cells by in situ hybridization and immunolocalization. Moreover, lack of asparagine in asn2 phloem sap and lowered 15N flux to sinks, accompanied by the delayed yellowing (senescence) of asn2 leaves, in the absence of asparagine support a specific role of asparagine in phloem loading and nitrogen reallocation. We conclude that ASN2 is essential for nitrogen assimilation, distribution and remobilization (via the phloem) within the plant.  相似文献   
79.
    
Abstract: The palaeohistological study of the calcified internal organ of Axelrodichthys araripensis Maisey, 1986, a coelacanthiform from the Lower Cretaceous of Brazil (Crato (Aptian) and Santana (Albian) formations of the Araripe Basin), shows that the walls of this organ consist of osseous blades of variable thickness separated from each other by the matrix. This indicates that, in the living individuals, the walls were reinforced by ossified plates, probably separated by conjunctive tissue. This calcified sheath present in Axelrodichthys, as well as in other fossil coelacanths, lies in ventral position relative to the gut and its single anterior opening is located under the opercle, suggesting a direct connection with the pharynx or the oesophagus. The calcified organ of Axelrodichthys, like that of other fossil coelacanths, is here regarded as an ‘ossified lung’ and compared with the ‘fatty lung’ of the extant coelacanth Latimeria. The reinforcement of the pulmonary walls by the overlying osseous blades could be interpreted as a means of adapting volumetric changes in the manner of bellows, a necessary function for ventilation in pulmonary respiration. Other functional hypotheses such as hydrostatic and/or acoustic functions are also discussed.  相似文献   
80.
Methane formation in the rumen is a major cause of greenhouse gas emission. Plant secondary compounds in ruminant diets, such as essential oils, saponins and tannins, are known to affect methane production. However, their methane-lowering properties have generally been associated with undesired side effects such as impaired feed digestibility. Here we show that microbial methane formation in diluted and buffered rumen fluid was significantly lowered in the presence of (+)-catechin, a natural polyphenol. This flavan-3-ol, a tannin precursor, decreased the production of methane in a dose-dependent manner, where 1.0 mol catechin prevented the emission of 1.2 mol methane. During methane mitigation, (+)-catechin was step-wise degraded via C- and A-ring cleavage and reductive dehydroxylation reactions, as indicated by LC-QToF-MS based metabolomic profiling and NMR-based metabolite identification. This accounted for the acceptance of six hydrogen atoms per catechin molecule. Consequently, catechin functions as an extensive hydrogen sink, thereby competing with methane production by rumen methanogens ( $ {\text{CO}}_{2} + 4{\text{H}}_{2} \Rightarrow {\text{CH}}_{4} + 2{\text{H}}_{2} {\text{O}} $ ). Catechin therefore acts as an antireductant under the anaerobic test conditions, in contrast to its well-known antioxidant role during oxidative stress. The reductive degradation of catechin had no impact on the formation of ruminal fermentation products such as short-chain fatty acids in this model system. These results highlight the potential of plant secondary compounds to replace methane precursors as hydrogen sinks, and justify future scientific screening programs for similar, potentially more effective organic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号