首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   26篇
  国内免费   2篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   9篇
  2019年   11篇
  2018年   12篇
  2017年   6篇
  2016年   4篇
  2015年   24篇
  2014年   25篇
  2013年   44篇
  2012年   31篇
  2011年   31篇
  2010年   12篇
  2009年   15篇
  2008年   13篇
  2007年   16篇
  2006年   10篇
  2005年   11篇
  2004年   10篇
  2003年   5篇
  2002年   8篇
  2001年   12篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   1篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
排序方式: 共有405条查询结果,搜索用时 15 毫秒
91.
Maladaptive social interaction and its related psychopathology have been highlighted in psychiatry especially among younger generations. In Japan, novel expressive forms of psychiatric phenomena such as “modern-type depression” and “hikikomori” (a syndrome of severe social withdrawal lasting for at least six months) have been reported especially among young people. Economic games such as the trust game have been utilized to evaluate real-world interpersonal relationships as a novel candidate for psychiatric evaluations. To investigate the relationship between trusting behaviors and various psychometric scales, we conducted a trust game experiment with eighty-one Japanese university students as a pilot study. Participants made a risky financial decision about whether to trust each of 40 photographed partners. Participants then answered a set of questionnaires with seven scales including the Lubben Social Network Scale (LSNS)-6 and the Patient Health Questionnaire (PHQ)-9. Consistent with previous research, male participants trusted partners more than female participants. Regression analysis revealed that LSNS-family (perceived support from family) for male participants, and item 8 of PHQ-9 (subjective agitation and/or retardation) for female participants were associated with participants’ trusting behaviors. Consistent with claims by social scientists, our data suggest that, for males, support from family was negatively associated with cooperative behavior toward non-family members. Females with higher subjective agitation (and/or retardation) gave less money toward males and high attractive females, but not toward low attractive females in interpersonal relationships. We believe that our data indicate the possible impact of economic games in psychiatric research and clinical practice, and validation in clinical samples including modern-type depression and hikikomori should be investigated.  相似文献   
92.
93.
Sea urchin embryos are excellent for in vivo functional studies because of their transparency and tractability in manipulation. They are also favorites for pharmacological approaches since they develop in an aquatic environment and addition of test substances is straightforward. A concern in many pharmacological tests though is the potential for pleiotropic effects that confound the conclusions drawn from the results. Precise cellular interpretations are often not feasible because the impact of the perturbant is not known. Here we use single‐cell mRNA (messenger RNA) sequencing as a metric of cell types in the embryo and to determine the selectivity of two commonly used inhibitors, one each for the Wnt and the Delta‐Notch pathways, on these nascent cell types. We identified 11 distinct cell types based on mRNA profiling, and that the cell lineages affected by Wnt and Delta/Notch inhibition were distinct from each other. These data support specificity and distinct effects of these signaling pathways in the embryo and illuminate how these conserved pathways selectively regulate cell lineages at a single cell level. Overall, we conclude that single cell RNA‐seq analysis in this embryo is revealing of the cell types present during development, of the changes in the gene regulatory network resulting from inhibition of various signaling pathways, and of the selectivity of these pathways in influencing developmental trajectories.  相似文献   
94.

Background  

Endogenous pararetroviral sequences (EPRVs) are a recently discovered class of repetitive sequences that is broadly distributed in the plant kingdom. The potential contribution of EPRVs to plant pathogenicity or, conversely, to virus resistance is just beginning to be explored. Some members of the family Solanaceae are particularly rich in EPRVs. In previous work, EPRVs have been characterized molecularly in various species of Nicotiana including N.tabacum (tobacco) and Solanum tuberosum (potato). Here we describe a family of EPRVs in cultivated tomato (Solanum lycopersicum L.) and a wild relative (S.habrochaites).  相似文献   
95.
96.
This study reconstructed a three dimensional fluid/structure interaction (FSI) model to investigate the compliance of human soft palate during calm respiration. Magnetic resonance imaging scans of a healthy male subject were obtained for model reconstruction of the upper airway and the soft palate. The fluid domain consists of nasal cavity, nasopharynx and oropharynx. The airflow in upper airway was assumed as laminar and incompressible. The soft palate was assumed as linear elastic. The interface between airway and soft palate was the FSI interface. Sinusoidal variation of velocity magnitude was applied at the oropharynx corresponding to ventilation rate of 7.5L/min. Simulations of fluid model in upper airway, FSI models with palatal Young's modulus of 7539Pa and 3000Pa were carried out for two cycles of respiration. The results showed that the integrated shear forces over the FSI interface were much smaller than integrated pressure forces in all the three directions (axial, coronal and sagittal). The total integrated force in sagittal direction was much smaller than that of coronal and axial directions. The soft palate was almost static during inspiration but moved towards the posterior pharyngeal wall during expiration. In conclusion, the displacement of human soft palate during respiration was mainly driven by air pressure around the surface of the soft palate with minimal contribution of shear stress of the upper airway flow. Despite inspirational negative pressure, expiratory posterior movement of soft palate could be another factor for the induction of airway collapse.  相似文献   
97.
EMBO J (2012) 31 20, 3991–4004 doi:10.1038/emboj.2012.244; published online August312012Glucose-stimulated insulin secretion, controlled by multiple protein phosphorylation events, is critical for the regulation of glucose homeostasis. Protein kinase A (PKA) is known to play a role in β cell physiology, but the role of its anchoring protein is not fully understood. Hinke et al (2012) illustrate the significance of A-kinase anchoring protein 150 in tethering protein phosphatase 2B to mediate nutrient-stimulated insulin secretion and thus modulate glucose homeostasis.Insulin secretion is a key component in the regulation of glucose homeostasis. The initiation of glucose-stimulated insulin secretion (GSIS) is coordinated by numerous protein phosphorylation and dephosphorylation events in the β cell (Jones and Persaud, 1998). PKA and protein phosphatase 2B (PP2B or calcineurin—a Ca2+/calmodulin-dependent enzyme) are examples of enzymes that can influence the release of insulin. The combined effects of these enzymes propagate GSIS, which is mediated intracellularly via an increase in ATP concentration, Ca2+ influx via the voltage-dependent Ca2+ channel (VDCC) and cyclic AMP (cAMP) signalling. At the same time, these enzymes can also regulate glucose usage (e.g., via glycogen synthase) in insulin-sensitive tissues such as the skeletal muscle.cAMP signalling serves to potentiate GSIS via either (1) PKA-dependent or (2) PKA-independent mechanisms (involving cAMP-binding protein Epac2A (exchange protein directly activated by cAMP 2)). A-kinase anchoring protein (AKAP) belongs to a group of regulatory proteins that interacts with cAMP-dependent PKA (Pidoux and Tasken, 2010; Welch et al, 2010). It can regulate the differential usage of kinase versus phosphatase, thereby controlling metabolic outcomes in specific tissues. Although it is known that PKA phosphorylation regulates β cell physiology, the role of such anchoring proteins is less clear (Faruque et al, 2009; Lester et al, 2001). For example, while disruption of the AKAP–PKA interaction has been reported to decrease insulin secretion (Lester et al, 1997), the specific regulatory protein that anchors PKA has yet to be identified.In this study, Hinke et al (2012) sought to identify the specific anchoring protein that tethers PKA, and to elucidate its function. Two AKAP proteins, namely, AKAP150 and AKAP220 were first shortlisted from an overlay assay used to detect RII (regulatory subunit of PKA) binding proteins. Subsequently, only AKAP150 was found to be important for nutrient-stimulated insulin secretion. Mice with a global knockout of AKAP150 (AKAP150KO) exhibited insulin secretory defects. AKAP150 binds to and regulates the phosphorylation-dependent VDCC. Thus, these AKAP150KO mice exhibited decreased basal Ca2+ current and glucose-stimulated Ca2+ influx in isolated β cells. One reason for the decrease in Ca2+ current could be attributed to a mislocation of its binding partner PP2B (discussed below). Glucose-stimulated cAMP fluctuation which is necessary for insulin secretion (Dyachok et al, 2008) was also abolished in AKAP150KO mice. Therefore, AKAP150KO mice exhibit an insulin secretory defect due to multiple impairments including (1) decreased Ca2+ influx and (2) defective cAMP production.Surprisingly, while the authors report that global AKAP150KO mice secrete less insulin, the skeletal muscle, an insulin-sensitive peripheral tissue, exhibited improved blood glucose clearance likely due to increased phosphorylation of IRS-1 and Akt/PKB, and activation of AMPK that resulted in improved insulin sensitivity. On the other hand, β cell-specific AKAP150KO mice secrete less insulin upon glucose stimulation despite increased insulin content in the β cell that occurs as an adaptation to the impaired glucose tolerance. These mice clearly exhibited an impaired glucose tolerance that is due to defective insulin secretion because they do not exhibit an increase in insulin sensitivity. Together, these data indicate that the skeletal muscle selectively adapts to the global absence of AKAP150 to compensate for the decrease in insulin in the body. Notably, AKAP150 is also expressed in the liver but does not exhibit compensatory effects while AKAP150 is not expressed in the adipose tissue.AKAP150 can anchor numerous enzymes with different metabolic activities. For instance, it binds PKA and PP2B, two enzymes with opposing functions, to the cell surface membrane. Hinke et al (2012) further investigated the impact of disrupting specific binding partners of AKAP150. Unexpectedly, AKAP150Δ36 mice that lack residues 705–724 and therefore cannot bind PKA exclusively are effectively metabolically normal. It is thus surprising that the anchoring of PKA to AKAP150 is not necessary for proper insulin release although this interaction is important in other cellular systems (Lu et al, 2008, 2011). AKAP150ΔPIX mice lacking residues 655–661 and thus unable to tether to PP2B at a seven-residue PIxIxIT motif demonstrate the same metabolic phenotype as global AKAP150KO mice. This suggests that AKAP150 is critical for tethering PP2B, and that PP2B is the key molecule necessary for insulin secretion in β cells. PP2B is also a determinant of the metabolic phenotypes such as improved insulin sensitivity and glucose handling upon loss of anchorage of PP2B.Overall, Hinke et al (2012) used complementary in vivo approaches including animal physiology, and in vitro islet culture and live-cell imaging to demonstrate the importance of the kinase/phosphatase anchoring protein AKAP150 in regulating nutrient-stimulated insulin secretion and modulating glucose homeostasis in mice (Figure 1). However, it is likely that there are AKAP150-independent mechanisms regulating insulin secretion since islets from AKAP150KO mice continued to respond to glucose stimulation and secrete insulin in both static and dynamic conditions, albeit at lower levels compared to wild-type mice. Importantly, the authors also identified AKAP150 tethering to PP2B as a key molecular event that regulates insulin secretion and glucose homeostasis (Figure 1). Thus, targeting the AKAP150–PP2B interface and the PIxIxIT motif could be therapeutically useful for increasing insulin sensitivity in patients with diabetes and metabolic syndromes. This could involve designing molecules or chemical compounds to bind the motif and block interaction between AKAP150 and PP2B. In parallel, the safety of systemic blockade of this interaction needs to be ascertained. Alternatively, skeletal muscle-specific AKAP150ΔPIX mice could be generated to determine if the metabolic phenotype is similar to global AKAP150ΔPIX mice. Should this be the case, then localized pharmacological blockade of AKAP150–PP2B interaction could be considered.Open in a separate windowFigure 1AKAP150 tethered to PP2B at a seven-residue PIxIxIT motif mediates nutrient-stimulated insulin secretion and glucose homeostasis. Both global AKAP150KO and AKAP150ΔPIX (AKAP150-PP2B binding abolished) mice exhibit insulin secretory defects, enhanced insulin sensitivity in skeletal muscle and overall improved glucose tolerance. This infers the importance of AKAP150-PP2B tethering for glucose homeostasis. ‘Tick'' indicates an increase or improvement. ‘Cross'' indicates a defect or impairment. ‘Equal sign'' indicates no change or no effect. Questions emerging from this study are highlighted in red.Several issues worth pursuing include (1) determining the differential adaptive response of the skeletal muscle versus the liver to alterations in insulin sensitivity in global AKAP150KO mice, (2) further investigating the functional relevance of AKAP150 tethering to PKA (by generating β cell-specific AKAP150Δ36 mice) as there is probably a biological rationale for their interaction, (3) exploring whether AKAP150-related or other proteins are expressed and act in different adipose tissue depots, (4) determining whether AKAP150 acts in a similar manner in ‘human'' skeletal muscle and β cells, and (5) examining if polymorphisms in human genes that encode AKAP150 tethering proteins are linked to disorders of glucose metabolism.  相似文献   
98.
99.
Electronic tags were used to examine the seasonal movements, aggregations and diving behaviors of Atlantic bluefin tuna (Thunnus thynnus) to better understand their migration ecology and oceanic habitat utilization. Implantable archival tags (n = 561) were deployed in bluefin tuna from 1996 to 2005 and 106 tags were recovered. Movement paths of the fish were reconstructed using light level and sea-surface-temperature-based geolocation estimates. To quantify habitat utilization we employed a weighted kernel estimation technique that removed the biases of deployment location and track length. Throughout the North Atlantic, high residence times (167±33 days) were identified in four spatially confined regions on a seasonal scale. Within each region, bluefin tuna experienced distinct temperature regimes and displayed different diving behaviors. The mean diving depths within the high-use areas were significantly shallower and the dive frequency and the variance in internal temperature significantly higher than during transit movements between the high-use areas. Residence time in the more northern latitude high-use areas was significantly correlated with levels of primary productivity. The regions of aggregation are associated with areas of abundant prey and potentially represent critical foraging habitats that have seasonally abundant prey. Throughout the North Atlantic mean diving depth was significantly correlated with the depth of the thermocline, and dive behavior changed in relation to the stratification of the water column. In this study, with numerous multi-year tracks, there appear to be repeatable patterns of clear aggregation areas that potentially are changing with environmental conditions. The high concentrations of bluefin tuna in predictable locations indicate that Atlantic bluefin tuna are vulnerable to concentrated fishing efforts in the regions of foraging aggregations.  相似文献   
100.
Genome-wide screening for sensitivity to chronic endoplasmic reticulum (ER) stress induced by dithiothreitol and tunicamycin (TM) identified mutants deleted for Cu, Zn superoxide dismutase (SOD) function (SOD1, CCS1) or affected in NADPH generation via the pentose phosphate pathway (TKL1, RPE1). TM-induced ER stress led to an increase in cellular superoxide accumulation and an increase in SOD1 expression and Sod1p activity. Prior adaptation of the hac1 mutant deficient in the unfolded protein response (UPR) to the superoxide-generating agent paraquat reduced cell death under ER stress. Overexpression of the ER oxidoreductase Ero1p known to generate hydrogen peroxide in vitro, did not lead to increased superoxide levels in cells subjected to ER stress. The mutants lacking SOD1, TKL1, or RPE1 exhibited decreased UPR induction under ER stress. Sensitivity of the sod1 mutant to ER stress and decreased UPR induction was partially rescued by overexpression of TKL1 encoding transketolase. These data indicate an important role for SOD and cellular NADP(H) in cell survival during ER stress, and it is proposed that accumulation of superoxide affects NADP(H) homeostasis, leading to reduced UPR induction during ER stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号