首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   60篇
  625篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   16篇
  2017年   6篇
  2016年   14篇
  2015年   9篇
  2014年   23篇
  2013年   24篇
  2012年   24篇
  2011年   26篇
  2010年   23篇
  2009年   19篇
  2008年   19篇
  2007年   29篇
  2006年   24篇
  2005年   23篇
  2004年   21篇
  2003年   15篇
  2002年   21篇
  2001年   17篇
  2000年   12篇
  1999年   10篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1992年   11篇
  1991年   11篇
  1990年   14篇
  1989年   11篇
  1988年   9篇
  1987年   11篇
  1986年   7篇
  1985年   10篇
  1984年   4篇
  1983年   9篇
  1982年   9篇
  1981年   4篇
  1980年   9篇
  1979年   4篇
  1978年   6篇
  1977年   11篇
  1976年   7篇
  1975年   6篇
  1972年   5篇
  1971年   5篇
  1969年   4篇
  1966年   4篇
排序方式: 共有625条查询结果,搜索用时 13 毫秒
101.
The mechanisms through which general anaesthetics, an extremely diverse group of drugs, cause reversible loss of consciousness have been a long-standing mystery. Gradually, a relatively small number of important molecular targets have emerged, and how these drugs act at the molecular level is becoming clearer. Finding the link between these molecular studies and anaesthetic-induced loss of consciousness presents an enormous challenge, but comparisons with the features of natural sleep are helping us to understand how these drugs work and the neuronal pathways that they affect. Recent work suggests that the thalamus and the neuronal networks that regulate its activity are the key to understanding how anaesthetics cause loss of consciousness.  相似文献   
102.
103.
104.
Many decisions involve a trade-off between commitment and flexibility. We show here that the collective decisions ants make over new nest sites are sometimes sufficiently flexible that the ants can change targets even after an emigration has begun. Our findings suggest that, in this context, the ants’ procedures are such that they can sometimes avoid ‘negative information cascades’ which might lock them into a poor choice. The ants are more responsive to belated good news of a higher quality nest than they are when the nest they had initially chosen degraded to become worse than an alternative. Our study confirms, in a new way, that ant colonies can be very powerful “search engines”.  相似文献   
105.
Ants use a great variety of recruitment methods to forage for food or find new nests, including tandem running, group recruitment and scent trails. It has been known for some time that there is a loose correlation across many taxa between species-specific mature colony size and recruitment method. Very small colonies tend to use solitary foraging; small to medium sized colonies use tandem running or group recruitment whereas larger colonies use pheromone recruitment trails. Until now, explanations for this correlation have focused on the ants'' ecology, such as food resource distribution. However, many species have colonies with a single queen and workforces that grow over several orders of magnitude, and little is known about how a colony''s organization, including recruitment methods, may change during its growth. After all, recruitment involves interactions between ants, and hence the size of the colony itself may influence which recruitment method is used—even if the ants'' behavioural repertoire remains unchanged. Here we show using mathematical models that the observed correlation can also be explained by recognizing that failure rates in recruitment depend differently on colony size in various recruitment strategies. Our models focus on the build up of recruiter numbers inside colonies and are not based on optimality arguments, such as maximizing food yield. We predict that ant colonies of a certain size should use only one recruitment method (and always the same one) rather than a mix of two or more. These results highlight the importance of the organization of recruitment and how it is affected by colony size. Hence these results should also expand our understanding of ant ecology.  相似文献   
106.
In the piriform cortex, individual odorants activate a unique ensemble of neurons that are distributed without discernable spatial order. Piriform neurons receive convergent excitatory inputs from random collections of olfactory bulb glomeruli. Pyramidal cells also make extensive recurrent connections with other excitatory and inhibitory neurons. We introduced channelrhodopsin into the piriform cortex to characterize these intrinsic circuits and to examine their contribution to activity driven by afferent bulbar inputs. We demonstrated that individual pyramidal cells are sparsely interconnected by thousands of excitatory synaptic connections that extend, largely undiminished, across the piriform cortex, forming a large excitatory network that can dominate the bulbar input. Pyramidal cells also activate inhibitory interneurons that mediate strong, local feedback inhibition that scales with excitation. This recurrent network can enhance or suppress bulbar input, depending on whether the input arrives before or after the cortex is activated. This circuitry may shape the ensembles of piriform cells that encode odorant identity.  相似文献   
107.
Recent studies have demonstrated adaptive evolutionary responses to climate change, but little is known about how these responses may influence ecological interactions with other organisms, including natural enemies. We used a resurrection experiment in the greenhouse to examine the effect of evolutionary responses to drought on the susceptibility of Brassica rapa plants to a fungal pathogen, Alternaria brassicae. In agreement with previous studies in this population, we found an evolutionary shift to earlier flowering postdrought, which was previously shown to be adaptive. Here, we report the novel finding that postdrought descendant plants were also more susceptible to disease, indicating a rapid evolutionary shift to increased susceptibility. This was accompanied by an evolutionary shift to increased specific leaf area (thinner leaves) following drought. We found that flowering time and disease susceptibility displayed plastic responses to experimental drought treatments, but that this plasticity did not match the direction of evolution, indicating that plastic and evolutionary responses to changes in climate can be opposed. The observed evolutionary shift to increased disease susceptibility accompanying adaptation to drought provides evidence that even if populations can rapidly adapt in response to climate change, evolution in other traits may have ecological effects that could make species more vulnerable.  相似文献   
108.
Some neurotransmitter-gated ion channels are very much more sensitive to general anesthetics than others, even when they are genetically and structurally related. The most striking example of this is the extreme sensitivity of heteromeric neuronal nicotinic acetylcholine receptors to inhalational general anesthetics compared with the marked insensitivity of the closely related homomeric neuronal nicotinic receptors. Here we investigate the role of the alpha subunit in determining the anesthetic sensitivity of these receptors by using alpha(3)/alpha(7) chimeric subunits that are able to form functional homomeric receptors. By comparing the sensitivities of a number of chimeras to the inhalational agent halothane we show that the short (13 amino acids) putative extracellular loop connecting the second and third transmembrane segments is a critical determinant of anesthetic sensitivity. In addition, using site-directed mutagenesis, we show that two particular amino acids in this loop play a dominant role. When mutations are made in this loop, there is a good correlation between increasing anesthetic sensitivity and decreasing acetylcholine sensitivity. We conclude that this extracellular loop probably does not participate directly in anesthetic binding, but rather determines receptor sensitivity indirectly by playing a critical role in transducing anesthetic binding into an effect on channel gating.  相似文献   
109.
The mite Antennophorus grandis (Berlese, 1903) is a large obligate ectoparasite of workers of the ant Lasius flavus(Fabricius). It rides under the head of the ants and uses its long front legs to communicate with its hosts and stimulate them to give it food. We present allometric and morphometric data showing that L. flavus workers can occur in two size classes. We also present the first quantitative ethograms of mite-bearing and mite-free L. flavus workers of the two size categories. The mites tend to occur on the smaller nurse workers and receive food from them at an extremely high frequency. Antennophorus grandis also frequently gain food when one ant is donating food to the one they are riding upon. The mites seem to inhibit the ability of their host worker to show most social behaviours such as tending ant larvae. The mites frequently move from one host worker to another. For these reasons the mites may have a larger impact upon their host colony than their relative rarity first suggests. The ants do not seem to have any specific defence against these parasites. The mites live in small populations and show female-biased sex ratios consistent with local mate competition. Preliminary evidence suggests that the mites have haplodiploid sex determination which may explain how they are able to adapt their sex allocation to their population size.  相似文献   
110.
S Curry  W R Lieb  N P Franks 《Biochemistry》1990,29(19):4641-4652
The effects of a diverse range of 36 general anesthetics and anesthetic-like compounds on a highly purified preparation of the bacterial luciferase enzyme from Vibrio harveyi have been investigated. Under conditions where the flavin site was saturated, almost all of the anesthetics inhibited the peak enzyme activity and slowed the rate of decay. However, a small number of the more polar agents only inhibited at high concentrations, while stimulating activity at lower concentrations. The inhibition was found to be competitive in nature, with the anesthetics acting by competing for the binding of the aldehyde substrate n-decanal. The anesthetic binding site on the enzyme could accommodate only a single molecule of a large anesthetic but more than one molecule of a small anesthetic, consistent with the site having circumscribed dimensions. The homologous series of n-alcohols and n-alkanes exhibited cutoffs in inhibitory potency, but these cutoffs occurred at very different chain lengths (about C10 for the n-alkanes and C15 for the n-alcohols), mimicking similar cutoffs observed for general anesthetic potencies in animals. Binding constants determined from peak height measurements showed that the inhibitor binding site was predominantly hydrophobic (with a mean delta delta G CH2 of -5.0 kJ/mol), but fluctuations in the binding constants with chain length revealed regions in the binding site with polar characteristics. Binding constants to an intermediate form of the enzyme (intermediate II) were also determined, and these confirmed the principal features of the binding site deduced from the peak height measurements. The long-chain compounds, however, bound considerably tighter to the intermediate II form of the enzyme, and this was shown to account for the biphasic decay kinetics that were observed with these compounds. Overall, there was poor agreement between the EC50 concentrations for inhibiting the luciferase enzyme from V. harveyi and those which induce general anesthesia in animals, with bulky compounds being much less potent, and moderately long chain alcohols being much more potent, as luciferase inhibitors than as general anesthetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号