首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   28篇
  352篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   8篇
  2015年   13篇
  2014年   24篇
  2013年   12篇
  2012年   17篇
  2011年   15篇
  2010年   9篇
  2009年   15篇
  2008年   9篇
  2007年   10篇
  2006年   19篇
  2005年   12篇
  2004年   17篇
  2003年   15篇
  2002年   11篇
  2001年   12篇
  2000年   17篇
  1999年   10篇
  1998年   14篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   9篇
  1993年   7篇
  1992年   10篇
  1991年   6篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1981年   1篇
  1978年   2篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1966年   1篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
21.
Fluorescent proteins, such as green fluorescent protein and red fluorescent protein (DsRED), have become frequently used reporters in plant biology. However, their potential to monitor dynamic gene regulation is limited by their high stability. The recently made DsRED-E5 variant overcame this problem. DsRED-E5 changes its emission spectrum over time from green to red in a concentration independent manner. Therefore, the green to red fluorescence ratio indicates the age of the protein and can be used as a fluorescent timer to monitor dynamics of gene expression. Here, we analyzed the potential of DsRED-E5 as reporter in plant cells. We showed that in cowpea (Vigna unguiculata) mesophyll protoplasts, DsRED-E5 changes its fluorescence in a way similar to animal cells. Moreover, the timing of this shift is suitable to study developmental processes in plants. To test whether DsRed-E5 can be used to monitor gene regulation in plant organs, we placed DsRED-E5 under the control of promoters that are either up- or down-regulated (MtACT4 and LeEXT1 promoters) or constitutively expressed (MtACT2 promoter) during root hair development in Medicago truncatula. Analysis of the fluorescence ratios clearly provided more accurate insight into the timing of promoter activity.  相似文献   
22.
The functionality of G(1)-phase arrest was investigated in relation to repair of potentially lethal damage (PLD) in human glioblastoma Gli-06 cells. Confluent cultures were irradiated and plated for clonogenic survival either immediately or 24 h after gamma irradiation. Bivariate flow cytometry was performed to assess the distribution over the cell cycle. Levels of TP53 and CDKN1A protein were assessed with Western blotting and levels of CDKN1A mRNA with RT-PCR. Confluence significantly reduced the number of proliferating cells. Marked PLD repair was found in the absence of an intact G(1) arrest. No accumulation of TP53 was observed, and the protein was smaller than the wild-type TP53 of RKO cells. No increased expression of CDKN1A at the mRNA or protein levels was found in Gli-06 cells. The TP53 of Gli-06 cells was unable to transactivate the CDKN1A gene. From this study, it is evident that PLD repair may be present without a functional TP53 or G(1) arrest.  相似文献   
23.
Beta-haemolytic streptococci are important human and animal pathogens: their genetic traits that are associated with the ability to infect human hosts remain, however, unclear. The surface protein, Lmb, mediates the adherence of Streptococcus agalactiae to human laminin. For further analysis of the corresponding gene, the adjacent genomic regions were sequenced. Lmb is localized on a putative composite transposon of 16 kb and is flanked by two copies of a novel insertion sequence element (ISSag2). It harbours the genes scpB and lmb, which are 98% identical with the respective genes of Streptococcus pyogenes. Analysis of the distribution of these genes and ISSag2 among 131 streptococcal strains revealed that all of the human isolates, but only 20% (12 of 61) of the animal isolates, contained scpB and lmb or their homologues. To investigate if the putative transposon can be mobilized, an erythromycin resistance marker was incorporated into the lmb gene of S. agalactiae. Screening for mutant strains with a regained susceptibility for erythromycin identified strains with a deletion of scpB, lmb, and one copy of ISSag2. We hypothesize that a horizontal gene transfer caused the exchange of scpB and lmb and that the ability of S. pyogenes, S. agalactiae and group C and G streptococcal strains to colonize or infect human hosts is dependent on their presence.  相似文献   
24.
The extracellular matrix component chondroitin sulfate supports the survival of neocortical neurons and influences their differentiation in culture. During development of the rat forebrain expression of chondroitin sulfate peaks at around birth. To elucidate functional partners of this important player of neurogenesis, a monoclonal antibody, termed MAb-9, was generated after immunization with chondroitin sulfate-binding proteins from neonatal rat brain. In western blots of neonatal tissue, MAb-9 recognized a major brain-specific 65-kDa protein band. While most of the 65-kDa protein was present in the soluble compartment, a significant fraction was membrane-associated. Prolonged extraction of brain membranes with CHAPS revealed three additional minor protein bands of approximately 48, 50, and 58 kDa. Of these, the 50-kDa protein specifically bound to chondroitin sulfate C-Sepharose. Immunocytochemical studies and western blot analyses of cultures of neocortical neurons and astrocytes demonstrated that MAb-9 recognizes a neuron-specific cytosolic protein. In the developing cerebral cortex the protein was detectable by immunohistochemistry in the preplate and ventricular zones as early as embryonic day 15. On embryonic day 18, the protein was found in the marginal zone and the subplate, but it was not present in the emerging cortical plate. At the neonatal stage the immunoreactivity was distributed throughout the cerebral cortex with prominent staining of the marginal zone. A similar pattern was observed in the adult animal. Notably, the laminar distribution of MAb-9 immunoreactivity in the cerebral cortex during the prenatal period closely resembled the expression pattern reported for chondroitin sulfate. Thus, MAb-9 recognizes a neuronal cytosolic protein which might participate in neurotrophic signaling events triggered by chondroitin sulfate.  相似文献   
25.
We have developed a novel strategy for the introduction of durable insect resistance in crops. This strategy was based on intervention in the natural relationship between plants and insects. For many insects, including pests such as thrips (Frankliniella occidentalis), the flower is an important factor in their life cycle, serving either as a food source or as a place for mating. The insects are attracted to the flower by scent, which is mainly produced by the petals, and by the bright colour of these floral organs. We therefore anticipated that removal or changing the identity of the petals would significantly reduce the attractiveness of the flower to thrips. To test this hypothesis, we used cucumber as a model species because most modern varieties are parthenocarpic, in which the fruit develops without fertilization. The cucumber mutant green petals, in which the petals are homeotically transformed into green sepals, was particularly useful for this study. The susceptibility of the cucumber plants to damage by thrips was determined by recording thrip numbers and by measuring leaf damage. Large differences were observed when greenhouse compartments with either wild-type or green petal mutant plants were compared. The rate of population growth of the insects on the mutant plants was significantly reduced and the leaves were almost undamaged. These results demonstrate that alterations in the structure of flowers may interfere with the life cycle of insects, providing the means for a novel and natural strategy for obtaining insect resistance.  相似文献   
26.
27.
28.
29.
Root colonization by the basidiomycete fungus Piriformospora indica induces host plant tolerance against abiotic and biotic stress, and enhances growth and yield. As P. indica has a broad host range, it has been established as a model system to study beneficial plant-microbe interactions. Moreover, its properties led to the assumption that P. indica shows potential for application in crop plant production. Therefore, possible mechanisms of P. indica improving host plant yield were tested in outdoor experiments: Induction of higher grain yield in barley was independent of elevated pathogen levels and independent of different phosphate fertilization levels. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. Analysis of plant development and yield parameters indicated that positive effects of P. indica on grain yield are due to accelerated growth of barley plants early in development.Key words: mycorrhiza, barley development, Piriformospora indica, phosphate uptake, grain yield, pathogen resistanceThe wide majority of plant roots in natural ecosystems is associated with fungi, which very often play an important role for the host plants'' fitness.1 The widespread arbuscular mycorrhizal (AM) symbiosis formed by fungi of the phylum Glomeromycota is mainly characterized by providing phosphate to their host plant in exchange for carbohydrates.2,3 Fungi of the order Sebacinales also form beneficial interactions with plant roots and Piriformospora indica is the best-studied example of this group.4 This endophyte was originally identified in the rhizosphere of shrubs in the Indian Thar desert,5 but it turned out that the fungus colonizes roots of a very broad range of mono- and dicotyledonous plants,6 including major crop plants.79 Like other mutualistic endophytes, P. indica colonizes roots in an asymptomatic manner10 and promotes growth in several tested plant species.6,11,12 The root endophyte, moreover, enhances yield in barley and tomato and increases in both plants resistance against biotic stresses,7,9 suggesting that application in agri- and horticulture could be successful.  相似文献   
30.
Diabetic nephropathy is a serious complication of diabetes mellitus with a pressing need for effective metabolic markers to detect renal impairment. Of potential significance are the inositol compounds, myo-inositol (MI), and the less abundant stereoisomer, D-chiro-inositol (DCI), which are excreted at increased levels in the urine in diabetes mellitus, a phenomenon known as inosituria. There is also a selective urinary excretion of DCI compared to MI. As the biological origins of altered inositol metabolism in diabetes mellitus are unknown, the aim of this study was to determine whether the diabetic kidney was directly responsible. Kidneys isolated from four-week streptozotocin-induced diabetic rats were characterized by a 3-fold reduction in glomerular filtration rate (GFR) compared to matched non-diabetic kidneys. When perfused with fixed quantities of MI (50 µM) and DCI (5 µM) under normoglycemic conditions (5 mM glucose), GFR-normalized urinary excretion of MI was increased by 1.7-fold in diabetic vs. non-diabetic kidneys. By comparison, GFR-normalized urinary excretion of DCI was increased by 4-fold. Perfusion conditions replicating hyperglycemia (20 mM glucose) potentiated DCI but not MI urinary excretion in both non-diabetic and diabetic kidneys. Overall, there was a 2.4-fold increase in DCI urinary excretion compared to MI in diabetic kidneys that was independent of glucose ambience. This increased urinary excretion of DCI and MI in diabetic kidneys occurred despite increased renal expression of the inositol transporters, sodium myo-inositol transporter subtype 1 and 2 (SMIT1 and SMIT2). These findings show that the diabetic kidney primarily mediates inosituria and altered urinary partitioning of MI and DCI. Urinary inositol levels might therefore serve as an indicator of impaired renal function in diabetes mellitus with wider implications for monitoring chronic kidney disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号