首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18866篇
  免费   1673篇
  国内免费   11篇
  2022年   138篇
  2021年   212篇
  2020年   147篇
  2019年   205篇
  2018年   247篇
  2017年   252篇
  2016年   354篇
  2015年   710篇
  2014年   793篇
  2013年   978篇
  2012年   1203篇
  2011年   1259篇
  2010年   823篇
  2009年   777篇
  2008年   1063篇
  2007年   1143篇
  2006年   1073篇
  2005年   1072篇
  2004年   1059篇
  2003年   870篇
  2002年   868篇
  2001年   280篇
  2000年   230篇
  1999年   259篇
  1998年   280篇
  1997年   167篇
  1996年   134篇
  1995年   126篇
  1994年   143篇
  1993年   134篇
  1992年   164篇
  1991年   147篇
  1990年   126篇
  1989年   155篇
  1988年   117篇
  1987年   135篇
  1986年   113篇
  1985年   142篇
  1984年   129篇
  1983年   121篇
  1982年   138篇
  1981年   123篇
  1980年   102篇
  1979年   102篇
  1978年   83篇
  1977年   97篇
  1976年   76篇
  1974年   94篇
  1973年   80篇
  1972年   68篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
A series of pyridomorphinans possessing an aryl (10a-s) or heteroaryl (11a-h) substituent at the 5'-position of the pyridine ring of 17-cyclopropylmethyl-4,5 alpha-epoxypyrido[2',3':6,7]morphinan was synthesized and evaluated for binding and functional activity at the opioid delta, mu, and kappa receptors. All of these pyridomorphinans bound with higher affinity at the delta site than at mu or kappa sites. The binding data on isomeric compounds revealed that there exists greater bulk tolerance for substituents placed at the o-position of the phenyl ring than at m- or p-positions. Among the ligands examined, the 2-chlorophenyl (10l), 2-nitrophenyl (10n), 2-pyridyl (11a), and 4-quinolinyl (11g) compounds bound to the delta receptor with subnanomolar affinity. Compound 10c with the p-tolyl substituent displayed the highest mu/delta selectivity (ratio=42) whereas compound 10l with the 2-chlorophenyl substituent displayed the highest kappa/delta selectivity (ratio=23). At 10 microM concentration, the in vitro functional activity determined using [(35)S]GTP-gamma-S binding assays showed that all of the compounds were antagonists devoid of any significant agonist activity at the delta, mu, and kappa receptors. Antagonist potency determinations of three selected ligands revealed that the p-tolyl compound 10c is a potent delta selective antagonist. In the [(35)S]GTP-gamma-S assays this compound had a functional antagonist K(i) value of 0.2, 4.52, and 7.62 nM at the delta, mu, and kappa receptors, respectively. In the smooth muscle assays 10c displayed delta antagonist potency with a K(e) value of 0.88 nM. As an antagonist, it was 70-fold more potent at the delta receptors in the MVD than at the mu receptors in the GPI. The in vitro delta antagonist profile of this pyridomorphinan 10c resembles that of the widely used delta selective antagonist ligand naltrindole.  相似文献   
992.
Recent data have demonstrated a role for CD4(+) cells in the pathogenesis of renal ischemia reperfusion injury (IRI). Identifying engagement of adaptive immune cells in IRI suggests that the other major cell of the adaptive immune response, B cells, may also mediate renal IRI. An established model of renal IRI was used: 30 min of renal pedicle clamping was followed by reperfusion in B cell-deficient ( mu MT) and wild-type mice. Renal function was significantly improved in mu MT mice compared with wild-type mice at 24, 48, and 72 h postischemia. mu MT mice also had significantly reduced tubular injury. Both groups of mice had similar renal phagocyte infiltration postischemia assessed by myeloperoxidase levels and similar levels of CD4(+) T cell infiltration postischemia. Peritubular complement C3d staining was also similar in both groups. To identify the contribution of cellular vs soluble mechanism of action, serum transfer into mu MT mice partially restored ischemic phenotype, but B cell transfers did not. These data are the first demonstration of a pathogenic role for B cells in ischemic acute renal failure, with a serum factor as a potential underlying mechanism of action.  相似文献   
993.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   
994.
995.
Although Mycobacterium kansasii has emerged as an important pathogen frequently encountered in immunocompromised patients, little is known about the mechanisms of M. kansasii pathogenicity. Lipoarabinomannan (LAM), a major mycobacterial cell wall lipoglycan, is an important virulence factor for many mycobacteria, as it modulates the host immune response. Therefore, the detailed structures of the of M. kansasii LAM (KanLAM), as well as of its biosynthetic precursor lipomannan (KanLM), were determined in a clinical strain isolated from a human immunodeficiency virus-positive patient. Structural analyses revealed that these lipoglycans possess important differences as compared with those from other mycobacterial species. KanLAM carries a mannooligosaccharide cap but is devoid of the inositol phosphate cap present in Mycobacterium smegmatis. Characterization of the mannan core of KanLM and KanLAM demonstrated the following occurrences: 1) alpha1,2-oligo-mannopyranosyl side chains, contrasting with the single mannopyranosyl residues substituting the mannan core in all the other structures reported so far; and 2) 5-methylthiopentose residues that were described to substitute the arabinan moiety from Mycobacterium tuberculosis LAM. With respect to the arabinan domain of KanLAM, succinyl groups were found to substitute the C-3 position on 5-arabinofuranosyl residues, reported to be linked to the C-2 of the 3,5-arabinofuranose in Mycobacterium bovis bacillus calmette-guerin LAM. Because M. kansasii has been reported to induce apoptosis, we examined the possibility of the M. kansasii lipoglycans to induce apoptosis of THP-1 cells. Our results indicate that, in contrast to KanLAM, KanLM was a potent apoptosis-inducing factor. This work underlines the diversity of LAM structures among various pathogenic mycobacterial species and also provides evidence of LM being a potential virulence factor in M. kansasii infections by inducing apoptosis.  相似文献   
996.
997.
A highly constrained pseudo-tetrapeptide (OC252-324) further defines a new allosteric binding site located near the center of fructose-1,6-bisphosphatase. In a crystal structure, pairs of inhibitory molecules bind to opposite faces of the enzyme tetramer. Each ligand molecule is in contact with three of four subunits of the tetramer, hydrogen bonding with the side chain of Asp187 and the backbone carbonyl of residue 71, and electrostatically interacting with the backbone carbonyl of residue 51. The ligated complex adopts a quaternary structure between the canonical R- and T-states of fructose-1,6-bisphosphatase, and yet a dynamic loop essential for catalysis (residues 52-72) is in a conformation identical to that of the T-state enzyme. Inhibition by the pseudo-tetrapeptide is cooperative (Hill coefficient of 2), synergistic with both AMP and fructose 2,6-bisphosphate, noncompetitive with respect to Mg2+, and uncompetitive with respect to fructose 1,6-bisphosphate. The ligand dramatically lowers the concentration at which substrate inhibition dominates the kinetics of fructose-1,6-bisphosphatase. Elevated substrate concentrations employed in kinetic screens may have facilitated the discovery of this uncompetitive inhibitor. Moreover, the inhibitor could mimic an unknown natural effector of fructose-1,6-bisphosphatase, as it interacts strongly with a conserved residue of undetermined functional significance.  相似文献   
998.
999.
The nuclear receptor constitutive androstane receptor (CAR) acts as a xenobiotic sensor and regulates the expression of enzymes, such as several cytochromes P450s and the UDP-glucuronosyltransferase (UGT) type 1A1. CAR binds as a heterodimer with the retinoid X receptor (RXR) to specific DNA sites, called response elements (REs). Clusters of CAR REs, referred to as phenobarbital response enhancer modules (PBREMs), have been identified in several CAR target genes. In this study we confirm that REs formed by direct repeats of two AGTTCA hexamers with 4 spacing nucleotides are optimal for the binding of CAR-RXR heterodimers. In addition, we found that the heterodimers also form complexes on everted repeat-type arrangements with 8 spacing nucleotides. We also observed that CAR is able to bind DNA as a monomer and to interact in this form with different coregulators even in the presence of RXR. Systematic variation of the nucleotides 5'-flanking to both AGTTCA hexamers showed that the dinucleotide sequence modulates the DNA complex formation of CAR monomers and CAR-RXR heterodimer by a factor of up to 20. The highest preference was found for the sequence AG and lowest for CC. The increased DNA affinity of CAR is mediated by the positively charged arginines 90 and 91 located in the carboxyl-terminal extension of the DNA-binding domain of the receptor. Furthermore, we show that one of the three CAR REs of the human UGT1A1 PBREM is exclusively bound by CAR monomers and this is regulated by ligands that bind to this nuclear receptor. This points to a physiological role for CAR monomers. Therefore, both CAR-RXR heterodimers and CAR monomers can contribute to the gene activating function of PBREMs in CAR target genes.  相似文献   
1000.
Mucin glycans were isolated from different regions of the normal human intestine (ileum, cecum, transverse and sigmoid colon, and rectum) of two individuals with ALeb blood group. A systematic study of the monosaccharides and oligosaccharide alditols released by reductive beta-elimination from mucins was performed using gas chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and nuclear magnetic resonance spectroscopy techniques. Important variations were observed in the mucin-associated oligosaccharide content with an increasing gradient of sialic acid from the ileum to the colon associated with a reverse gradient of fucose. Moreover, a comparative study of the Sda/Cad and ABH blood group determinants along the gastrointestinal tract showed the same reverse distribution in the two kinds of antigens. In addition, besides their heterogeneity, sialic acids presented considerable variations in the degree of O-acetylation in relation to glycan sialylation level. These data are discussed in view of recent concepts suggesting that the oligosaccharide composition of the gut constitutes a varied ecosystem for microorganisms that are susceptible to adapt there and possess the specific adhesion system and specific enzymes able to provide a carbohydrate nutrient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号