首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20401篇
  免费   1792篇
  国内免费   10篇
  2022年   147篇
  2021年   228篇
  2020年   154篇
  2019年   204篇
  2018年   256篇
  2017年   259篇
  2016年   369篇
  2015年   761篇
  2014年   824篇
  2013年   1062篇
  2012年   1295篇
  2011年   1325篇
  2010年   887篇
  2009年   817篇
  2008年   1142篇
  2007年   1198篇
  2006年   1145篇
  2005年   1152篇
  2004年   1116篇
  2003年   945篇
  2002年   926篇
  2001年   346篇
  2000年   293篇
  1999年   305篇
  1998年   299篇
  1997年   177篇
  1996年   168篇
  1995年   153篇
  1994年   169篇
  1993年   148篇
  1992年   209篇
  1991年   184篇
  1990年   148篇
  1989年   173篇
  1988年   139篇
  1987年   163篇
  1986年   130篇
  1985年   160篇
  1984年   147篇
  1983年   137篇
  1982年   146篇
  1981年   132篇
  1980年   103篇
  1979年   105篇
  1978年   93篇
  1977年   111篇
  1976年   90篇
  1974年   118篇
  1973年   92篇
  1972年   80篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
Huxley: From Devil's Disciple to Evolution's High Priest. Adrian Desmond. Reading. MA: Addison-Wesley. 1997.820 pp.  相似文献   
43.
Restriction fragment length polymorphisms (RFLPs) were described for the porcine loci for β-glucosidase (GBA) and the β-polypeptide 1 of the Na+, K+-transporting ATPase (ATP1B1). Linkage analyses using a three-generation pedigree provided evidence for the assignment of ATP1B1, GBA and two microsatellite loci (S0001 and S0067) to a previously described linkage group comprising the loci for blood group L (EAL) and an anonymous microsatellite (S0097). The linear order of the six markers was determined with confidence by multipoint analyses and the length of the linkage group was estimated at 88 CM. This linkage group was assigned to pig chromosome 4 on the basis of a previous physical localization of the ATP1B1 gene. In situ hybridization data for S0001 presented in this study were consistent with a localization on chromosome 4 and suggested a regional localization to 4pl2-pl3. The present study reveals conflicting data concerning the genetic localization of the K88 loci controlling the expression of the receptors for the E. coli pilus antigens. One group has reported data suggesting a loose linkage between K88 and EAL, now mapped to chromosome 4, whereas two other groups have found linkage between K88 and the transferrin locus (TF), mapped to chromosome 13 by in situ hybridization.  相似文献   
44.
45.
46.
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.  相似文献   
47.
48.
A- and B-type lamins are differentially expressed in normal human tissues   总被引:12,自引:0,他引:12  
 A selection of normal human tissues was investigated for the presence of lamins B1, B2, and A-type lamins, using a panel of antibodies specific for the individual lamin subtypes. By use of immunoprecipitation and two-dimensional immunoblotting techniques we demonstrated that these antibodies do not cross-react with other lamin subtypes and that a range of different phosphorylation isoforms is recognized by each antibody. The lamin B2 antibodies appeared to decorate the nuclear lamina in all tissues examined, except hepatocytes, in which very little lamin B2 expression was observed. In contrast to previous studies, which suggested the ubiquitous expression of lamin B1 in mammalian tissues, we show that lamin B1 is not as universally distributed throughout normal human tissues as was to be expected from previous studies. Muscle and connective tissues are negative, while in epithelial cells lamin B1 seemed to be preferentially detected in proliferating cells. These results correspond well with those obtained for lamin B1 in chicken tissues. The expression of A-type lamins is most prominent in well-differentiated epithelial cells. Relatively undifferentiated and proliferating cells in epithelia showed a clearly reduced expression of A-type lamins. Furthermore, most cells of neuroendocrine origin as well as most hematopoietic cells were negative for A-type lamin antibodies. Accepted: 4 February 1997  相似文献   
49.
50.
Trypanosoma brucei infects various domestic and wild mammals in equatorial Africa. The parasite's genome contains several hundred alternative and highly diverged surface antigens, of which only a single one is expressed in any cell. Individual cells occasionally change expression of their surface antigen, allowing them to escape immune surveillance. These switches appear to occur in a partly random way, creating a diverse set of antigenic variants. In spite of this diversity, the parasitaemia develops as a series of outbreaks, each outbreak dominated by relatively few antigenic types. Host-specific immunity eventually clears the dominant antigenic types and a new outbreak follows from antigenic types that have apparently been present all along at low frequency. This pattern of sequential dominance by different antigenic types remains unexplained. I use a mathematical model of parasitaemia and host immunity to show that small variations in the rate at which each type switches to other types can explain the observations. My model shows that randomly chosen switch rates do not provide sufficiently ordered parasitaemias to match the observations. Instead, minor modifications of switch rates by natural selection are required to develop a sequence of ordered parasitaemias.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号