首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18272篇
  免费   1639篇
  国内免费   10篇
  2022年   131篇
  2021年   205篇
  2020年   144篇
  2019年   192篇
  2018年   236篇
  2017年   234篇
  2016年   333篇
  2015年   691篇
  2014年   759篇
  2013年   952篇
  2012年   1164篇
  2011年   1213篇
  2010年   798篇
  2009年   751篇
  2008年   1024篇
  2007年   1110篇
  2006年   1039篇
  2005年   1044篇
  2004年   1029篇
  2003年   851篇
  2002年   852篇
  2001年   264篇
  2000年   217篇
  1999年   245篇
  1998年   276篇
  1997年   161篇
  1996年   135篇
  1995年   125篇
  1994年   141篇
  1993年   128篇
  1992年   157篇
  1991年   142篇
  1990年   123篇
  1989年   151篇
  1988年   112篇
  1987年   136篇
  1986年   109篇
  1985年   136篇
  1984年   124篇
  1983年   120篇
  1982年   136篇
  1981年   121篇
  1980年   97篇
  1979年   93篇
  1978年   83篇
  1977年   95篇
  1976年   73篇
  1974年   93篇
  1973年   79篇
  1972年   67篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
In response to high population density or low food supply, the nematode Caenorhabditis elegans enters an alternative larval stage, known as the dauer, that can withstand adverse conditions for prolonged periods. C. elegans senses its population density through a small-molecule signal, traditionally called the dauer pheromone, that it secretes into its surroundings. Here we show that the dauer pheromone consists of several structurally related ascarosides-derivatives of the dideoxysugar ascarylose-and that two of these ascarosides (1 and 2) are roughly two orders of magnitude more potent at inducing dauer formation than a previously reported dauer pheromone component (3) and constitute a physiologically relevant signal. The identification of dauer pheromone components 1 and 2 will facilitate the identification of target receptors and downstream signaling proteins.  相似文献   
902.
Aureoumbra lagunensis is the causative organism of the Texas brown tide and is notable because it dominated the Laguna Madre ecosystem from 1990 to 1997. This species is unusual because it has the highest known critical nitrogen to phosphorus ratio (N:P) for any microalgae ranging from 115 to 260, far higher than the 16N:1P Redfield ratio. Because of its high N:P ratio, Aureoumbra should be expected to respond to N additions that would not stimulate the growth of competitors having the Redfield ratio. To evaluate this prediction, a mesocosm experiment was performed in the Laguna Madre, a South Texas coastal lagoon, in which a mixed AureoumbraSynechococcus (a cyanobacterium) community was enclosed in 12 mesocosms and subjected to nitrogen addition (6 controls, 6 added ammonium) for 16 days. After day 4, added nitrogen did not significantly increase Aureoumbra specific growth rate but the alga retained dominance throughout the experiment (64–75% of total cell biovolume). In control mesocosms, Aureoumbra became less abundant during the first 4 days of the experiment but rebounded by the end of the experiment and was dominant over Synechococcus. Despite the lack of a strong positive growth response, Aureoumbra did respond physiologically to N addition. By the end of the experiment, the average N:P ratio of the Aureoumbra-dominated community was 86 in the N+ treatment and 41 in the control, indicating that the alga became less N-limited in the N+ treatment. The average C:N ratio was 6.6 in the N+ treatment (8.6 in the control) and suggests that the alga was not N-limited, however, C:N ratio may not be a good indicator of nitrogen limitation since this alga can produce significant quantities of carbon-containing extracellular polysaccharides, depending on growth conditions. Both Aureoumbra cellular chlorophyll fluorescence and cell size increased in response to added N, indicating a reduction in N limitation. It appeared that the N additions were not large and/or frequent enough to stimulate Aureoumbra growth. The main competitor, the unicellular cyanobacterium Synechococcus, responded positively to the nitrogen addition by increased specific growth rate. Unlike Aureoumbra, no significant effect on Synechococcus cellular pigment fluorescence or cell size was noted. Literature data suggest that Synechococcus, like Aureoumbra, may have a critical N:P ratio much higher than 16:1, which could explain its response.  相似文献   
903.
904.
White blood cells (WBCs) express tens of thousands of genes, whose expression levels are modified by genetic and external factors. The purpose of the present study was to investigate the effects of acute exercise on gene expression profiles (GEPs) of WBCs and to identify suitable genes that may serve as surrogate markers for monitoring exercise and training load. Five male participants performed an exhaustive treadmill test (ET) at 80% of their maximal O(2) uptake (Vo(2 max)) and a moderate treadmill test (MT) at 60% Vo(2 max) for exactly the same time approximately 2 wk later. WBCs were isolated by the erythrocyte lysis method. GEPs were measured using the Affymetrix GeneChip technology. After scaling, normalization, and filtering, groupwise comparisons of gene expression intensities were performed, and several measurements were validated by real-time PCR. We found 450 genes upregulated and 150 downregulated (>1.5-fold change; ANOVA with Benjamini-Hochberg correction, P < 0.05) after ET that were closely associated with the gene ontology lists "response to stress" and "inflammatory response". Analysis of mean expression levels after MT showed that the extent of up- and downregulation was workload dependent. The genes for the stress (heat shock) proteins HSPA1A and HSPH1 and for the matrix metalloproteinase MMP-9 showed the most prominent increases, whereas the YES1 oncogene (YES1) and CD160 (BY55) were most strongly reduced. Despite different methodological approaches used, the consistency of our results with the expression data of another study (Connolly PH, Caiozzo VJ, Zaldivar F, Nemet D, Larson J, Hung SP, Heck JD, Hatfield GW, Cooper DM. J Appl Physiol 97: 1461-1469, 2004) suggests that expression fingerprints are useful tools for monitoring exercise and training loads and thereby help to avoid training-associated health risks.  相似文献   
905.
Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long-term dynamics in methanotrophic activity and the methanotroph community in the coastal oxygen minimum zone (OMZ) of Golfo Dulce, Costa Rica, combining biogeochemical analyses, experimental incubations and 16S rRNA gene sequencing over 3 consecutive years. Our results demonstrate a stable redox zonation across the years with high concentrations of methane (up to 1.7 μmol L−1) in anoxic bottom waters. However, we also measured high activities of anaerobic methane oxidation in the OMZ core (rate constant, k, averaging 30 yr−1 in 2018 and 8 yr−1 in 2019–2020). The OPU3 and Deep Sea-1 clades of the Methylococcales were implicated as conveyors of the activity, peaking in relative abundance 5–25 m below the oxic–anoxic interface and in the deep anoxic water respectively. Although their genetic capacity for anaerobic methane oxidation remains unexplored, their sustained high relative abundance indicates an adaptation of these clades to the anoxic, methane-rich OMZ environment, allowing them to play major roles in mitigating methane fluxes.  相似文献   
906.
陈金华 《古生物学报》2019,58(1):92-113
新发现的双壳类化石命名为Baxoitrigonia baxoiensis gen. et sp. nov.,产地为藏东八宿林卡家东,化石产于景星动物群之下的拉贡塘组下段,同层位有菊石和其他海相双壳类,时代为晚侏罗世Tithonian期;化石的外部特征很接近于三角蛤类Iotrigonia属,但前闭肌痕特征又相似于类三角蚌类,被认为是三角蛤类闯入非海相领域后演变成类三角蚌类的产物。此发现提供了生物和地层两方面的直接证据,证明非海相类三角蚌类(Trigonioidoidea超科)起源于海相三角蛤类(Trigoniida目),而不是起源于珠蚌类(Unionida目)。海相三角蛤类闯入边缘隔绝的洛隆-八宿地区并演变为非海相类三角蚌类,是一次典型的边域成种事件。  相似文献   
907.
In mammalian ventricular cardiomyocytes, invaginations of the surface membrane form the transverse tubular system (T-system), which consists of transverse tubules (TTs) that align with sarcomeres and Z-lines as well as longitudinal tubules (LTs) that are present between Z-lines in some species. In many cardiac disease etiologies, the T-system is perturbed, which is believed to promote spatially heterogeneous, dyssynchronous Ca2+ release and inefficient contraction. In general, T-system characterization approaches have been directed primarily at isolated cells and do not detect subcellular T-system heterogeneity. Here, we present MatchedMyo, a matched-filter-based algorithm for subcellular T-system characterization in isolated cardiomyocytes and millimeter-scale myocardial sections. The algorithm utilizes “filters” representative of TTs, LTs, and T-system absence. Application of the algorithm to cardiomyocytes isolated from rat disease models of myocardial infarction (MI), dilated cardiomyopathy induced via aortic banding, and sham surgery confirmed and quantified heterogeneous T-system structure and remodeling. Cardiomyocytes from post-MI hearts exhibited increasing T-system disarray as proximity to the infarct increased. We found significant (p < 0.05, Welch’s t-test) increases in LT density within cardiomyocytes proximal to the infarct (12 ± 3%, data reported as mean ± SD, n = 3) versus sham (4 ± 2%, n = 5), but not distal to the infarct (7 ± 1%, n = 3). The algorithm also detected decreases in TTs within 5° of the myocyte minor axis for isolated aortic banding (36 ± 9%, n = 3) and MI cardiomyocytes located intermediate (37 ± 4%, n = 3) and proximal (34 ± 4%, n = 3) to the infarct versus sham (57 ± 12%, n = 5). Application of bootstrapping to rabbit MI tissue revealed distal sections comprised 18.9 ± 1.0% TTs, whereas proximal sections comprised 10.1 ± 0.8% TTs (p < 0.05), a 46.6% decrease. The matched-filter approach therefore provides a robust and scalable technique for T-system characterization from isolated cells through millimeter-scale myocardial sections.  相似文献   
908.
909.
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号