首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1182篇
  免费   89篇
  国内免费   4篇
  2023年   4篇
  2022年   9篇
  2021年   25篇
  2020年   22篇
  2019年   19篇
  2018年   26篇
  2017年   21篇
  2016年   38篇
  2015年   55篇
  2014年   65篇
  2013年   93篇
  2012年   103篇
  2011年   80篇
  2010年   46篇
  2009年   59篇
  2008年   57篇
  2007年   59篇
  2006年   56篇
  2005年   55篇
  2004年   52篇
  2003年   59篇
  2002年   56篇
  2001年   6篇
  2000年   12篇
  1999年   11篇
  1998年   15篇
  1997年   15篇
  1996年   7篇
  1995年   7篇
  1994年   3篇
  1993年   6篇
  1992年   13篇
  1991年   11篇
  1990年   6篇
  1989年   8篇
  1988年   13篇
  1987年   3篇
  1986年   5篇
  1985年   8篇
  1984年   10篇
  1983年   7篇
  1982年   4篇
  1981年   8篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1971年   2篇
  1967年   4篇
  1966年   3篇
  1955年   2篇
排序方式: 共有1275条查询结果,搜索用时 15 毫秒
921.
Recent evidence indicates that oxidative stress is central to the pathogenesis of a wide variety of degenerative diseases, aging, and cancer. Oxidative stress occurs when the delicate balance between production and detoxification of reactive oxygen species is disturbed. Mammalian cells respond to this condition in several ways, among which is a change in mitochondrial morphology. In the present study, we have used rotenone, an inhibitor of complex I of the respiratory chain, which is thought to increase mitochondrial O(2)(-)* production, and mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to investigate the relationship between mitochondrial O(2)(-)* production and morphology in human skin fibroblasts. Video-rate confocal microscopy of cells pulse loaded with the mitochondria-specific cation rhodamine 123, followed by automated analysis of mitochondrial morphology, revealed that chronic rotenone treatment (100 nM, 72 h) significantly increased mitochondrial length and branching without changing the number of mitochondria per cell. In addition, this treatment caused a twofold increase in lipid peroxidation as determined with C11-BODIPY(581/591). Finally, digital imaging microscopy of cells loaded with hydroethidine, which is oxidized by O(2)(-)* to yield fluorescent ethidium, revealed that chronic rotenone treatment caused a twofold increase in the rate of O(2)(-)* production. MitoQ (10 nM, 72 h) did not interfere with rotenone-induced ethidium formation but abolished rotenone-induced outgrowth and lipid peroxidation. These findings show that increased mitochondrial O(2)(-)* production as a consequence of, for instance, complex I inhibition leads to mitochondrial outgrowth and that MitoQ acts downstream of this O(2)(-)* to prevent alterations in mitochondrial morphology.  相似文献   
922.
Activation of membrane P2X7 receptors by extracellular ATP [or its analog 2',3'-O-(4-benzoylbenzoyl)-ATP] results in the opening within several milliseconds of an integral ion channel that is permeable to small cations. If the ATP application is maintained for several seconds, two further sequelae occur: there is a gradual increase in permeability to the larger cation N-methyl-D-glucamine and the cationic propidium dye quinolinium, 4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(triethylammonio)propyl]diiodide (YO-PRO-1) enters the cell. The similarity in the time course of these two events has led to the widespread view that N-methyl-D-glucamine and YO-PRO-1 enter through a common permeation pathway, the "dilating" P2X7 receptor pore. Here we provide two independent lines of evidence against this view. We studied single human embryonic kidney cells expressing rat P2X7 receptors with patch-clamp recordings of membrane current and with fluorescence measurements of YO-PRO-1 uptake. First, we found that maintained application of the ATP analog did not cause any increase in N-methyl-D-glucamine permeability when the extracellular solution contained its normal sodium concentration, although YO-PRO-1 uptake was readily observed. Second, we deleted a cysteine-rich 18-amino acid segment in the intracellular juxtamembrane region of the P2X7 receptor. This mutated receptor showed normal YO-PRO-1 uptake but had no permeability to N-methyl-D-glucamine. Together, the clear differential effects of extracellular sodium ions or of mutation of the receptor strongly suggest that N-methyl-D-glucamine and YO-PRO-1 do not enter the cell by the same permeation pathway. ATP; cation channel; permeability; quinolinium, 4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(triethylammonio)propyl]diiodide  相似文献   
923.
Serine/threonine kinase Akt/protein kinase B, the cellular homologue of the transforming viral oncogene v-Akt, plays a central role in the regulation of cell survival and proliferation. We have previously demonstrated that the proto-oncogene TCL1 is an Akt kinase coactivator. TCL1 binds to Akt and mediates the formation of oligomeric TCL1-Akt high-molecular-weight protein complexes in vivo. Within these protein complexes, Akt is preferentially phosphorylated and activated. The MTCP1/TCL1/TCL1b oncogene activation is the hallmark of human T-cell prolymphocytic leukemia (T-PLL), a form of adult leukemia. In the present study, using a PCR-generated random TCL1 library combined with a yeast two-hybrid screening detecting loss of interaction, we identified D16 and I74 as amino acid residues mediating the association of TCL1 with Akt. Based on molecular modeling, we determined that the beta C-sheet of TCL1 is essential for TCL1 homodimerization. Studies with mammalian overexpression systems demonstrated that both Akt association and oligomerization domains of TCL1 are distinct functional domains. In vitro kinase assays and overexpression experiments in mammalian cells demonstrated that both TCL1-Akt interaction and oligomerization of TCL1 were required for TCL1-induced Akt activation and substrate phosphorylation. Assays for mitochondrial permeability transition, nuclear translocation, and cell recovery demonstrated that both Akt association and homodimerization of TCL1 are similarly needed for the full function of TCL1 as an Akt kinase coactivator in vivo. The results demonstrate the structural basis of TCL1-induced activation of Akt, which causes human T-PLL.  相似文献   
924.
The ability of the enteric submucosal plexus to influence the transport of water and electrolytes in the colon was investigated in rats for 1 week after acute whole-body gamma irradiation. The involvement of neuroimmune links in the epithelial responses to nerve stimulation was confirmed by the sensitivity of the tissue to tetrodotoxin, mepyramine and doxantrazole. At 1 and 3 days after irradiation, colon tissues were hyporesponsive to nerve stimulation. This was associated with a drastic diminution of mucosal mast cell numbers, tissue histamine levels, and rat mast cell protease II (RMCP II) levels, and by a decreased maximal epithelial response to exogenously added histamine. The responses to electric-field stimulation were insensitive to both mepyramine and doxantrazole. At 7 days, neurally evoked responses recovered, despite the virtual absence of mast cells, tissue histamine and RMCP II, and the continuing decreased response to histamine. The responses were insensitive to doxantrazole but were decreased by mepyramine. This study showed that the establishment of a normal epithelial response to neural stimulation can occur despite the radiation-induced depletion of mucosal mast cells. The recovery of the epithelial response, which was sensitive to mepyramine, may be ascribed to the reappearance of an unknown histaminergic pathway, which probably has indirect effects on epithelial transport but is independent of nerve-mast cell connections.  相似文献   
925.
Ceramide is an important cellular lipid involved in signal transduction and the biosynthesis of complex sphingolipids. It can be hydrolyzed into sphingosine, another important signaling lipid, by the activity of ceramidases. Point mutations in the gene (Asah1) encoding one ceramidase, acid ceramidase (AC), lead to the lysosomal storage disorder Farber disease (FD). To investigate the role of AC in mammalian development, we disrupted the mouse gene Asah1 in embryonic stem cells by homologous recombination mediated insertion of an AC targeting vector into the wild-type sequence. Genotype analysis of over 150 offspring or embryos from heterozygous intercrosses revealed an absence of Asah1(-/-) individuals at embryonic day (E) 8.5 or later, although the ratio of wild-type to Asah1(+/-) individuals from these intercrosses was 1:2. Northern blot analysis showed that AC expression was turned on early in development, by E7.0, and continued through at least E17. In contrast, expression of the related lipid hydrolase, acid sphingomyelinase, was shut down by E11. Asah1(+/-) mice survived and lived a normal lifespan, but developed a progressive lipid storage disease in several of their organs, particularly the liver. These histopathological findings in Asah1(+/-) animals correlated with an up to twofold increase in the ceramide content of these tissues and a reduction n AC activity, confirming that the gene insertion event disrupted AC activity and ceramide metabolism. These results provide direct in vivo evidence that normal ceramide metabolism, and AC activity in particular, is essential for mammalian development. The animals and embryos described here should be a valuable resource for investigators studying the role of ceramide in cell growth and development, as well as those interested in the pathogenesis of FD and other sphingolipid storage disorders.  相似文献   
926.
Studies of genetically modified mice provide a powerful approach to investigate consequences of altered gene expression in physiological and pathological states. The goal of the present study was to characterize afferent, central, and efferent components of the baroreceptor reflex in anesthetized Webster 4 mice. Baroreflex and baroreceptor afferent functions were characterized by measuring changes in renal sympathetic nerve activity (RSNA) and aortic depressor nerve activity (ADNA) in response to nitroprusside- and phenylephrine-induced changes in arterial pressure. The data were fit to a sigmoidal logistic function curve. Baroreflex diastolic pressure threshold (P(th)), the pressure at 50% inhibition of RSNA (P(mid)), and baroreflex gain (maximum slope) averaged 74 +/- 5 mmHg, 101 +/- 3 mmHg, and 2.30 +/- 0.54%/mmHg, respectively (n = 6). The P(th), P(mid), and gain for the diastolic pressure-ADNA relation (baroreceptor afferents) were similar to that observed for the overall reflex averaging 79 +/- 9 mmHg, 101 +/- 4 mmHg, and 2.92 +/- 0.53%/mmHg, respectively (n = 5). The central nervous system mediation of the baroreflex and the chronotropic responsiveness of the heart to vagal efferent activity were independently assessed by recording responses to electrical stimulation of the left ADN and the peripheral end of the right vagus nerve, respectively. Both ADN and vagal efferent stimulation induced frequency-dependent decreases in heart rate and arterial pressure. The heart rate response to ADN stimulation was nearly abolished in mice anesthetized with pentobarbital sodium (n = 4) compared with mice anesthetized with ketamine-acepromazine (n = 4), whereas the response to vagal efferent stimulation was equivalent under both types of anesthesia. Application of these techniques to studies of genetically manipulated mice can be used to identify molecular mechanisms of baroreflex function and to localize altered function to afferent, central, or efferent sites.  相似文献   
927.
We tested the hypothesis that maternal glucocorticoid treatment modulates 17-kDa myosin light chain (myosin LC17) isoform expression and contractile dynamics in fetal ovine carotid arteries. In the single course group, ewes received 6 mg dexamethasone or placebo over 48 h. In the repeated course group, ewes received 6 mg dexamethasone or placebo weekly for 5 wk. In response to 1 microM phenylephrine, arteries from fetuses of dexamethasone-treated ewes exhibited biphasic contractions, characterized by an intermediate relaxation phase. The relaxation rate constant was significantly higher in arteries from the fetuses of dexamethasone than placebo-treated ewes. The observed biphasic contractions suggest the appearance of functional sarcoplasmic reticulum in the arteries from the fetuses of dexamethasone-treated ewes. The myosin LC17(a) isoform expression was lower in the arteries from the fetuses of the placebo-treated ewes than in those from the ewes. Repeated maternal administration of dexamethasone induced an almost twofold increase in myosin LC17(a) isoform expression in the fetal arteries. In contrast, maternal myosin LC17a isoform expression was not affected by dexamethasone treatment. We speculate that dexamethasone-induced increases in fetal myosin LC17(a) isoform expression represent accelerated differentiation of a subpopulation of vascular smooth muscle cells from the fetal to adult phenotype.  相似文献   
928.
929.
Four trypsin isoinhibitors (CM-1 to CM-4) were purified from Momordica repens seeds by gel filtration on Sephadex G-50 followed by ion exchange chr  相似文献   
930.
Polyploidy is a profound phenotype found in tumors and its mechanism is unknown. We report here that when B-cell lymphoma gene-2 (Bcl-2) was overexpressed in a Chinese hamster ovary cell line that was deficient in CTP:phosphocholine cytidylyltransferase (CT), cellular DNA content doubled. The higher DNA content was due to a permanent conversion from diploid cells to tetraploid cells. The mechanism of polyploid formation could be attributed to the duplication of 18 parental chromosomes. The rate of conversion from diploid to tetraploid was Bcl-2 dose dependent. The diploid genome was not affected by Bcl-2 expression or by CT deficiency alone. Endogenous CT or expression of recombinant rat liver CTalpha prior to Bcl-2 expression prevented the formation of polyploid cells. This conversion was irreversible even when both initiating factors were removed. In this study, we have identified Bcl-2 as a positive regulator and CTalpha as a negative regulator of polyploid formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号