首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1741篇
  免费   132篇
  国内免费   1篇
  2022年   22篇
  2021年   35篇
  2020年   18篇
  2019年   23篇
  2018年   46篇
  2017年   27篇
  2016年   49篇
  2015年   78篇
  2014年   88篇
  2013年   104篇
  2012年   141篇
  2011年   120篇
  2010年   105篇
  2009年   103篇
  2008年   114篇
  2007年   115篇
  2006年   108篇
  2005年   94篇
  2004年   89篇
  2003年   97篇
  2002年   73篇
  2001年   17篇
  2000年   21篇
  1999年   22篇
  1998年   23篇
  1997年   14篇
  1996年   8篇
  1995年   15篇
  1994年   8篇
  1993年   8篇
  1992年   7篇
  1990年   8篇
  1988年   3篇
  1987年   4篇
  1985年   4篇
  1984年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1972年   3篇
  1970年   4篇
  1966年   3篇
  1961年   2篇
  1954年   2篇
排序方式: 共有1874条查询结果,搜索用时 109 毫秒
41.
42.
The mammalian circadian timing system coordinates key molecular, cellular and physiological processes along the 24-h cycle. Accumulating evidence suggests that many clock-controlled processes display a sexual dimorphism. In mammals this is well exemplified by the difference between the male and female circadian patterns of glucocorticoid hormone secretion and clock gene expression. Here we show that the non-circadian nuclear receptor and metabolic sensor Liver X Receptor alpha (LXRα) which is known to regulate glucocorticoid production in mice modulates the sex specific circadian pattern of plasma corticosterone. Lxrα-/- males display a blunted corticosterone profile while females show higher amplitude as compared to wild type animals. Wild type males are significantly slower than females to resynchronize their locomotor activity rhythm after an 8 h phase advance but this difference is abrogated in Lxrα-/- males which display a female-like phenotype. We also show that circadian expression patterns of liver 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and Phosphoenolpyruvate carboxykinase (Pepck) differ between sexes and are differentially altered in Lxrα-/- animals. These changes are associated with a damped profile of plasma glucose oscillation in males but not in females. Sex specific alteration of the insulin and leptin circadian profiles were observed in Lxα-/- females and could be explained by the change in corticosterone profile. Together this data indicates that LXRα is a determinant of sexually dimorphic circadian patterns of key physiological parameters. The discovery of this unanticipated role for LXRα in circadian physiology underscores the importance of addressing sex differences in chronobiology studies and future LXRα targeted therapies.  相似文献   
43.

Background

In Sub-Saharan Africa, infectious diarrhea is a major cause of morbidity and mortality. A case-control study was conducted to identify the etiology of diarrhea and to describe its main epidemiologic risk factors among hospitalized children under five years old in Bangui, Central African Republic.

Methods

All consecutive children under five years old hospitalized for diarrhea in the Pediatric Complex of Bangui for whom a parent’s written consent was provided were included. Controls matched by age, sex and neighborhood of residence of each case were included. For both cases and controls, demographic, socio-economic and anthropometric data were recorded. Stool samples were collected to identify enteropathogens at enrollment. Clinical examination data and blood samples were collected only for cases.

Results

A total of 333 cases and 333 controls was recruited between December 2011 and November 2013. The mean age of cases was 12.9 months, and 56% were male. The mean delay between the onset of first symptoms and hospital admission was 3.7 days. Blood was detected in 5% of stool samples from cases. Cases were significantly more severely or moderately malnourished than controls. One of the sought-for pathogens was identified in 78% and 40% of cases and controls, respectively. Most attributable cases of hospitalized diarrhea were due to rotavirus, with an attributable fraction of 39%. Four other pathogens were associated with hospitalized diarrhea: Shigella/EIEC, Cryptosporidium parvum/hominis, astrovirus and norovirus with attributable fraction of 9%, 10%, 7% and 7% respectively. Giardia intestinalis was found in more controls than cases, with a protective fraction of 6%.

Conclusions

Rotavirus, norovirus, astrovirus, Shigella/EIEC, Cryptosporidium parvum/hominis were found to be positively associated with severe diarrhea: while Giardia intestinalis was found negatively associated. Most attributable episodes of severe diarrhea were associated with rotavirus, highlighting the urgent need to introduce the rotavirus vaccine within the CAR’s Expanded Program on Immunization. The development of new medicines, vaccines and rapid diagnostic tests that can be conducted at the bedside should be high priority for low-resource countries.  相似文献   
44.

Introduction

The existence of partial volume effects in brain MR images makes it challenging to understand physio-pathological alterations underlying signal changes due to pathology across groups of healthy subjects and patients. In this study, we implement a new approach to disentangle gray and white matter alterations in the thalamus and the basal ganglia. The proposed method was applied to a cohort of early multiple sclerosis (MS) patients and healthy subjects to evaluate tissue-specific alterations related to diffuse inflammatory or neurodegenerative processes.

Method

Forty-three relapsing-remitting MS patients and nineteen healthy controls underwent 3T MRI including: (i) fluid-attenuated inversion recovery, double inversion recovery, magnetization-prepared gradient echo for lesion count, and (ii) T1 relaxometry. We applied a partial volume estimation algorithm to T1 relaxometry maps to gray and white matter local concentrations as well as T1 values characteristic of gray and white matter in the thalamus and the basal ganglia. Statistical tests were performed to compare groups in terms of both global T1 values, tissue characteristic T1 values, and tissue concentrations.

Results

Significant increases in global T1 values were observed in the thalamus (p = 0.038) and the putamen (p = 0.026) in RRMS patients compared to HC. In the Thalamus, the T1 increase was associated with a significant increase in gray matter characteristic T1 (p = 0.0016) with no significant effect in white matter.

Conclusion

The presented methodology provides additional information to standard MR signal averaging approaches that holds promise to identify the presence and nature of diffuse pathology in neuro-inflammatory and neurodegenerative diseases.  相似文献   
45.
46.
The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) ‘Bright Yellow 2’ cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.Eukaryotic plasma membranes (PMs) are composed of three main classes of lipids, glycerolipids, sphingolipids, and sterols, which may account for up to 100,000 different molecular species (Yetukuri et al., 2008; Shevchenko and Simons, 2010). Overall, all glycerolipids share the same molecular moieties in plants, animals, and fungi. By contrast, sterols and sphingolipids are different and specific to each kingdom. For instance, the plant PM contains an important number of sterols, among which β-sitosterol, stigmasterol, and campesterol predominate (Furt et al., 2011). In addition to free sterols, phytosterols can be conjugated to form steryl glycosides (SG) and acyl steryl glycosides (ASG) that represent up to approximately 15% of the tobacco (Nicotiana tabacum) PM (Furt et al., 2010). As for sphingolipids, sphingomyelin, the major phosphosphingolipid in animals, which harbors a phosphocholine as a polar head, is not detected in plants. Glycosyl inositol phosphorylceramides (GIPCs) are the major class of sphingolipids in plants, but they are absent in animals (Sperling and Heinz, 2003; Pata et al., 2010). Sphingolipidomic approaches identified up to 200 plant sphingolipids (for review, see Pata et al., 2010; Cacas et al., 2013).Although GIPCs belong to one of the earliest classes of plant sphingolipids that were identified in the late 1950s (Carter et al., 1958), only a few GIPCs have been structurally characterized to date because of their high polarity and a limited solubility in typical lipid extraction solvents. For these reasons, they were systematically omitted from published plant PM lipid composition. GIPCs are formed by the addition of an inositol phosphate to the ceramide moiety, the inositol headgroup of which can then undergo several glycosylation steps. The dominant glycan structure, composed of a hexose-GlcA linked to the inositol, is called series A. Polar heads containing three to seven sugars, so-called series B to F, have been identified and appeared to be species specific (Buré et al., 2011; Cacas et al., 2013; Mortimer et al., 2013). The ceramide moiety of GIPCs consists of a long-chain base (LCB), mainly t18:0 (called phytosphingosine) or t18:1 compounds (for review, see Pata et al., 2010), to which is amidified a very-long-chain fatty acid (VLCFA), the latter of which is mostly 2-hydroxylated (hVLCFA) with an odd or even number of carbon atoms. In plants, little is known about the subcellular localization of GIPCs. It is assumed, however, that they would be highly represented in the PM (Worrall et al., 2003; Sperling et al., 2005), even if this remains to be experimentally proven. The main argument supporting such an assumption is the strong enrichment of trihydroxylated LCB (t18:n) in detergent-insoluble membrane (DIM) fractions (Borner et al., 2005; Lefebvre et al., 2007), LCB being known to be predominant in GIPC’s core structure as aforementioned.In addition to this chemical complexity, lipids are not evenly distributed within the PM. Sphingolipids and sterols can preferentially interact with each other and segregate to form microdomains dubbed the membrane raft (Simons and Toomre, 2000). The membrane raft hypothesis suggests that lipids play a regulatory role in mediating protein clustering within the bilayer by undergoing phase separation into liquid-disordered and liquid-ordered phases. The liquid-ordered phase, termed the membrane raft, was described as enriched in sterol and saturated sphingolipids and is characterized by tight lipid packing. Proteins, which have differential affinities for each phase, may become enriched in, or excluded from, the liquid-ordered phase domains to optimize the rate of protein-protein interactions and maximize signaling processes. In animals, rafts have been implicated in a huge range of cellular processes, such as hormone signaling, membrane trafficking in polarized epithelial cells, T cell activation, cell migration, and the life cycle of influenza and human immunodeficiency viruses (Simons and Ikonen, 1997; Simons and Gerl, 2010). In plants, evidence is increasing that rafts are also involved in signal transduction processes and membrane trafficking (for review, see Mongrand et al., 2010; Simon-Plas et al., 2011; Cacas et al., 2012a).Moreover, lipids are not evenly distributed between the two leaflets of the PM. Within the PM of eukaryotic cells, sphingolipids are primarily located in the outer monolayer, whereas unsaturated phospholipids are predominantly exposed on the cytosolic leaflet. This asymmetrical distribution has been well established in human red blood cells, in which the outer leaflet contains sphingomyelin, phosphatidylcholine, and a variety of glycolipids like gangliosides. By contrast, the cytoplasmic leaflet is composed mostly of phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and their phosphorylated derivatives (Devaux and Morris, 2004). With regard to sphingolipids and glycerolipids, the asymmetry of the former is established during their biosynthesis and that of the latter requires ATPases such as the aminophospholipid translocase that transports lipids from the outer to the inner leaflet as well as multiple drug resistance proteins that transport phosphatidylcholine in the opposite direction (Devaux and Morris, 2004). This ubiquitous scheme encountered in animal cells could apply in plant cells as proposed (Tjellstrom et al., 2010). Indeed, the authors showed that there is a pronounced transverse lipid asymmetry in root at the PM. Phospholipids and galactolipids dominate the cytosolic leaflet, whereas the apoplastic leaflet is enriched in sphingolipids and sterols.From such a high diversity of the plant PM thus arises the question of the respective contribution of lipids to membrane suborganization. Our group recently tackled this aspect by characterizing the order level of liposomes prepared from various plant lipids and labeled with the environment-sensitive probe di-4-ANEPPDHQ (Grosjean et al., 2015). Fluorescence spectroscopy experiments showed that, among phytosterols, campesterol exhibits the strongest ability to order model membranes. In agreement with these data, spatial analysis of the membrane organization through multispectral confocal microscopy pointed to the strong ability of campesterol to promote liquid-ordered domain formation and organize their spatial distribution at the membrane surface. Conjugated sterols also exhibit a striking ability to order membranes. In addition, GIPCs enhance the sterol-induced ordering effect by emphasizing the formation and increasing the size of sterol-dependent ordered domains.The aim of this study was to reinvestigate the lipid composition and organization of the PM with a particular focus on GIPCs using tobacco leaves and cv Bright Yellow 2 (BY-2) cell cultures as models. Analyzing all membrane lipid classes at once, including sphingolipids, is challenging because they all display dramatically different chemical polarity, from very apolar (like free sterols) to highly polar (like polyglycosylated GIPCs) molecules. Most lipid extraction techniques published thus far use a chloroform/methanol mixture and phase partition to remove contaminants, resulting in the loss GIPCs, which remain in the aqueous phase, unextracted in the insoluble pellet, or at the interphase (Markham et al., 2006). In order to gain access to both glycerolipid and sphingolipid species at a glance, we developed a protocol whereby the esterifed or amidified fatty acids were hydrolyzed from the glycerol backbone (glycerolipids) or the LCB (sphingolipids) of membrane lipids, respectively. Fatty acids were then analyzed by gas chromatography-mass spectrometry (GC-MS) with appropriate internal standards for quantification. We further proposed that the use of methyl tert-butyl ether (MTBE) ensures the extraction of all classes of plant polar lipids. Our results indicate that GIPCs represent up to 40 mol % of total tobacco PM lipids. Interestingly, polyglycolyslated GIPCs are 5-fold enriched in DIMs of BY-2 cells when compared with the PM. Further investigation led us to develop a preparative purification procedure that allowed us to obtain enough material to raise antibodies against GIPCs. Using immunogold labeling on PM vesicles, it was found that polyglycosylated GIPCs cluster in membrane nanodomains, strengthening the idea that lateral nanosegregation of sphingolipids takes place at the PM in plants. Multispectral confocal microscopy was performed on vesicles prepared using GIPCs, phospholipids, and sterols and labeled with the environment-sensitive probe di-4-ANEPPDHQ. Our results show that, despite different fatty acid and polar head compositions, GIPCs extracted from tobacco leaves and BY-2 cells have a similar intrinsic propensity of enhancing vesicle global order together with sterols. Assuming that GIPCs are mostly present in the outer leaflet of the PM, interactions between sterols and sphingolipids were finally studied by the Langmuir monolayer technique, and the area of a single molecule of GIPC, or in interaction with phytosterols, was calculated. Using the calculation docking method, the energy of interaction between GIPCs and phytosterols was determined. A model was proposed in which GIPCs and phytosterols interact together to form liquid-ordered domains and in which the VLCFAs of GIPCs promote the interdigitation of the two membrane leaflets. The implications of domain formation and the asymmetrical distribution of lipids at the PM in plants are also discussed. Finally, we propose a model that reconsiders the intricate organization of the plant PM bilayer.  相似文献   
47.
Extreme temperatures impose energy costs on endotherms through thermoregulation and different adaptations help individuals to cope with these conditions. In social species, communal roosting and huddling are thought to decrease the energetic requirement of thermoregulation under low temperatures. This is likely to represent an important mechanism by which individuals save energy during the coldest parts of the year and hence to represent a non‐breeding benefit of sociality. Here, we investigate the potential thermoregulatory benefits of group living in roosting groups of sociable weavers Philetairus socius, a colonial cooperatively breeding passerine that builds communally a massive nest structure with several independent chambers wherein individuals breed and roost throughout the year. To investigate the benefits of sociality during the non‐breeding season, we studied the thermal environment during roosting in relation to group size. In addition, to understand the link between non‐breeding and breeding sociality in this species we studied group size stability between the pre‐breeding and breeding periods. As expected, we found that the nest chamber's night‐time temperature is strongly related to the number of birds roosting together, especially during cold nights. Specifically, birds in larger groups spent less time below the critical thermal minimum temperature (i.e. the temperature below which energy expenditure increases substantially). They were less exposed to external temperature variations. We also found a positive relationship between the number of birds roosting during winter and the breeding group size, indicating breeding group size predictability. In cooperative breeders such as the sociable weaver, the costs and benefits of sociality are usually studied during the breeding period. This study shows that a better understanding of non‐breeding benefits of group membership and group dynamics between the non‐breeding and breeding periods are necessary for a comprehensive understanding of the benefits of sociality.  相似文献   
48.
49.
Habitat turnover concomitantly causes destruction and creation of habitat patches. Following such a perturbation, metapopulations harbor either an extinction debt or an immigration credit, that is the future decrease or increase in population numbers due to this disturbance. Extinction debt and immigration credit are rarely considered simultaneously and disentangled from the relaxation time (time to new equilibrium). In this contribution, we test the relative importance of two potential drivers of time-delayed metapopulation dynamics: the spatial configuration of the habitat turnover and species dispersal ability. We provide a simulation-based investigation projecting metapopulation dynamics following habitat turnover in virtual landscapes. We consider two virtual species (a short-distance and a long-distance disperser) and five scenarios of habitat turnover depending on net habitat loss or gain and habitat aggregation. Our analyses reveal that (a) the main determinant of the magnitude of the extinction debt or immigration credit is the net change in total habitat area, followed by species dispersal distance and finally by the post-turnover habitat aggregation; (b) relaxation time weakly depends on the magnitude of the immigration credit or of the extinction debt; (c) the main determinant of relaxation time is dispersal distance followed by the net change in total habitat area and finally by the post-turnover habitat aggregation. These results shed light on the relative importance of dispersal ability and habitat turnover spatial structure on the components of time-delayed metapopulation dynamics.  相似文献   
50.
ClC-2 is a broadly expressed member of the voltage-gated ClC chloride channel family. In this study, we aimed to evaluate the role of the membrane lipid environment in ClC-2 function, and in particular the effect of cholesterol and ClC-2 distribution in membrane microdomains. Detergent-resistant and detergent-soluble microdomains (DSM) were isolated from stably transfected HEK293 cells by a discontinuous OptiPrep gradient. ClC-2 was found concentrated in detergent-insoluble membranes in basal conditions and relocalized to DSM upon cholesterol depletion by methyl-beta-cyclodextrin. As assessed by patch clamp recordings, relocalization was accompanied by acceleration of the activation kinetics of the channel. A similar distribution and activation pattern were obtained when cells were treated with the oxidant tert-butyl hydroperoxide and after ATP depletion. In both cases activation was prevented by cholesterol enrichment of cells. We conclude that the cholesterol environment regulates ClC-2 activity, and we provide evidence that the increase in ClC-2 activity in response to acute oxidative or metabolic stress involves relocalization of this channel to DSM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号