首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6297篇
  免费   513篇
  国内免费   9篇
  6819篇
  2023年   26篇
  2022年   60篇
  2021年   91篇
  2020年   82篇
  2019年   72篇
  2018年   95篇
  2017年   78篇
  2016年   120篇
  2015年   209篇
  2014年   240篇
  2013年   290篇
  2012年   362篇
  2011年   407篇
  2010年   262篇
  2009年   210篇
  2008年   318篇
  2007年   355篇
  2006年   339篇
  2005年   339篇
  2004年   291篇
  2003年   269篇
  2002年   295篇
  2001年   75篇
  2000年   81篇
  1999年   96篇
  1998年   86篇
  1997年   57篇
  1996年   48篇
  1995年   59篇
  1994年   49篇
  1993年   45篇
  1992年   53篇
  1991年   59篇
  1990年   58篇
  1989年   52篇
  1988年   46篇
  1987年   36篇
  1986年   34篇
  1985年   46篇
  1984年   34篇
  1983年   43篇
  1982年   46篇
  1981年   52篇
  1980年   51篇
  1979年   40篇
  1978年   32篇
  1976年   41篇
  1975年   37篇
  1974年   25篇
  1973年   27篇
排序方式: 共有6819条查询结果,搜索用时 15 毫秒
991.
Wild-type and seven mutant maltoporins were purified and their channel-forming activities studied after reconstitution into black lipid membranes. The proteins were assayed for alterations at the maltodextrin binding site by measuring the sugar-dependent blockage of ion flux through these channels. Some substitutions (R8H, W74R) caused reduced channel affinity for all maltodextrins without changing single channel conductivities. The channel with a GlySer insertion after residue 9 was also poorly blocked by sugars but unique to this protein, the channel showed a striking, almost exponential increase of affinity with increasing maltodextrin chain length. In mutants with AspPro insertions after residues 79 and 183, there was an increase in affinity for glucose and maltose but not longer maltodextrins. The additional negative charge in the AspPro insertion mutants increased the cation selectivity of maltoporin channels, as did the decrease in positive charge resulting from the R8H substitution. A mutant with a W120C substitution also showed an increased affinity for glucose and maltose but reduced affinity for longer maltosaccharides. In contrast, a Y118F substitution resulted in an 8-fold increase in maltotriose affinity, but lesser improvements for other sugars. These results are interpreted to reflect changes in subsites contributing to an extended binding site within the channel, which in turn determines the overall sugar affinity of maltoporin.  相似文献   
992.
Plant Cell, Tissue and Organ Culture (PCTOC) - Mambalgin-1 is a peptide that acts as a potent analgesic through inhibiting acid-sensing ion channels (ASIC) in nerve cells. Research has shown that...  相似文献   
993.
Francisella tularensis is a gram-negative, facultative intracellular pathogen that causes the highly infectious zoonotic disease tularemia. We have discovered a ca. 30-kb pathogenicity island of F. tularensis (FPI) that includes four large open reading frames (ORFs) of 2.5 to 3.9 kb and 13 ORFs of 1.5 kb or smaller. Previously, two small genes located near the center of the FPI were shown to be needed for intramacrophage growth. In this work we show that two of the large ORFs, located toward the ends of the FPI, are needed for virulence. Although most genes in the FPI encode proteins with amino acid sequences that are highly conserved between high- and low-virulence strains, one of the FPI genes is present in highly virulent type A F. tularensis, absent in moderately virulent type B F. tularensis, and altered in F. tularensis subsp. novicida, which is highly virulent for mice but avirulent for humans. The G+C content of a 17.7-kb stretch of the FPI is 26.6%, which is 6.6% below the average G+C content of the F. tularensis genome. This extremely low G+C content suggests that the DNA was imported from a microbe with a very low G+C-containing chromosome.  相似文献   
994.

Background  

Robustness is a recognized feature of biological systems that evolved as a defence to environmental variability. Complex diseases such as diabetes, cancer, bacterial and viral infections, exploit the same mechanisms that allow for robust behaviour in healthy conditions to ensure their own continuance. Single drug therapies, while generally potent regulators of their specific protein/gene targets, often fail to counter the robustness of the disease in question. Multi-drug therapies offer a powerful means to restore disrupted biological networks, by targeting the subsystem of interest while preventing the diseased network from reconciling through available, redundant mechanisms. Modelling techniques are needed to manage the high number of combinatorial possibilities arising in multi-drug therapeutic design, and identify synergistic targets that are robust to system uncertainty.  相似文献   
995.
996.
997.
998.
Breeding at the right time is essential for animals in seasonal climates in order to ensure that the energy demands of reproduction, particularly the nutritional requirements of growing young, coincide with peak food availability. Global climate change is likely to cause shifts in the timing of peak food availability, and in order to adapt successfully to current and future climate change, animals need to be able to adjust the time at which they initiate breeding. Many animals use environmental cues available before the breeding season to predict the seasonal peak in food availability and adjust their phenology accordingly. We tested the hypothesis that regulation of breeding onset should reflect the scale at which organisms perceive their environment by comparing phenology of three seabird species at a North Sea colony. As predicted, the phenology of two dispersive species, black-legged kittiwake ( Rissa tridactyla ) and common guillemot ( Uria aalge ), correlated with a large-scale environmental cue (the North Atlantic Oscillation), whereas a resident species, European shag ( Phalacrocorax aristotelis ), was more affected by local conditions (sea surface temperature) around the colony. Annual mean breeding success was lower in late years for European shags, but not for the other two species. Since correlations among climate patterns at different scales are likely to change in the future, these findings have important implications for how migratory animals can respond to future climate change.  相似文献   
999.
1000.
Aphids are important agricultural and forest pests that exhibit complex behaviors elicited by pheromonal signals. The aphid alarm pheromone--of which (E)-β-farnesene is the key (or only) component in most species--plays important roles in mediating interactions among individuals as well as multitrophic interactions among plants, aphids, and aphid natural enemies. Though many important questions remain to be answered, a large body of research has addressed various aspects of the biology, physiology, and ecology of aphid alarm pheromones. Here we review recent advances in our understanding of (a) the identity and composition of aphid alarm signals; (b) their biosynthesis and production; (c) their effects on conspecifics; (d) their role as cues for other insect species; and (e) their potential application for the management of pest organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号