首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
  52篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
31.

Purpose

To evaluate the effects of aerobic (AER) or aerobic plus resistance exercise (COMB) sessions on glucose levels and glucose variability in patients with type 2 diabetes. Additionally, we assessed conventional and non-conventional methods to analyze glucose variability derived from multiple measurements performed with continuous glucose monitoring system (CGMS).

Methods

Fourteen patients with type 2 diabetes (56±2 years) wore a CGMS during 3 days. Participants randomly performed AER and COMB sessions, both in the morning (24 h after CGMS placement), and at least 7 days apart. Glucose variability was evaluated by glucose standard deviation, glucose variance, mean amplitude of glycemic excursions (MAGE), and glucose coefficient of variation (conventional methods) as well as by spectral and symbolic analysis (non-conventional methods).

Results

Baseline fasting glycemia was 139±05 mg/dL and HbA1c 7.9±0.7%. Glucose levels decreased immediately after AER and COMB protocols by ∼16%, which was sustained for approximately 3 hours. Comparing the two exercise modalities, responses over a 24-h period after the sessions were similar for glucose levels, glucose variance and glucose coefficient of variation. In the symbolic analysis, increases in 0 V pattern (COMB, 67.0±7.1 vs. 76.0±6.3, P = 0.003) and decreases in 1 V pattern (COMB, 29.1±5.3 vs. 21.5±5.1, P = 0.004) were observed only after the COMB session.

Conclusions

Both AER and COMB exercise modalities reduce glucose levels similarly for a short period of time. The use of non-conventional analysis indicates reduction of glucose variability after a single session of combined exercises.

Trial Registration

Aerobic training, aerobic-resistance training and glucose profile (CGMS) in type 2 diabetes (CGMS exercise). ClinicalTrials.gov ID: NCT00887094.  相似文献   
32.
The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF3-PhSe)2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF3-PhSe)2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF3-PhSe)2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF3-PhSe)2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.  相似文献   
33.
This study analyzed the involvement of nitric oxide (NO) in the root lignification of soybean seedlings. To this end, changes in root cell viability; phenylalanine ammonia-lyase (PAL) and soluble and cell wall bound peroxidase (POD) activities and lignin and hydrogen peroxide (H2O2) contents of soybean roots treated with the NO-donor sodium nitroprusside (SNP) and its relationships with root growth were evaluated. Seedlings were cultivated in a nutrient solution supplemented with 5 to 1,000 μM SNP for 24 h. At an extremely low concentration (5 μM), SNP induced root growth and increased lignification and activities of related enzymes (PAL and cell wall-bound POD). At a high concentration (1,000 μM), SNP reduced root growth and lignification (PAL activity and H2O2 and lignin contents) and caused a loss of cell viability. Application of potassium ferrocyanide (an analog of SNP that cannot release NO) and PTIO (2-phenyl-4,4,5,5,-tetramethylimidazoleline-1-oxyl-3-oxide, a scavenger of NO) revealed that the inhibitory/stimulatory effects on root lignification may be due to NO itself. These results indicate that NO, depending on its concentration, may act as a stress factor, due to its toxic action, or as a signal molecule, inducing soybean root growth and lignification.  相似文献   
34.
This study examines the effect of new 1,5 benzodiazepines on acetylcholinesterase (AChE) and ATPDase (apyrase) activities from cerebral cortex of adult rats. Simultaneously, the effects of the classical 1,4-benzodiazepine on these enzymes were also studied for comparative purpose. The compounds 2-trichloromethyl-4-phenyl-3H-1,5-benzodiazepin and 2-trichloromethyl-4-(p-methyl-phenyl)-3H-1,5-benzodiazepin significantly inhibited acetylcholinesterase activity (p < 0.01) when tested in the range of 0.18–0.35 mM. The inhibition caused by these two new benzodiazepines was noncompetitive in nature. Similarly, at concentrations ranging from 0.063 to 0.25 mM, the 1,5 benzodiazepines inhibited ATP and ADP hydrolysis by synaptosomes from cerebral cortex (p < 0.01). However, the inhibition of nucleotide hydrolysis was uncompetitive in nature. Our results suggest that, although diazepam and the new benzodiazepines have chemical differences, they both presented an inhibitory effect on acetylcholinesterase and ATPDase activities.  相似文献   
35.
Parkinson’s disease (PD) is a highly complex brain disorder regarding clinical presentation, pathogenesis, and therapeutics. The cardinal motor signs, i.e., rigidity, bradykinesia, and unilateral tremors, arise in consequence of a progressive neuron death during the prodromal phase. Although multiple transmission systems are involved in disease neurobiology, patients will cross the line between the prodromal and early stage of diagnosed PD when they had lost half of the dopaminergic nigrostriatal cells. As the neurons continue to die ascending the neuroaxis, patients will face a more disabling disease with motor and nonmotor signs. Shedding light on molecular mechanisms of neuron death is an urgent need for understanding PD pathogenesis and projecting therapeutics. This work examined the expression of microRNAs in the striatum of parkinsonian rats chronically exposed to rotenone (2.5 mg/Kg, i.p., daily for 10 days). Rotenone caused motor deficits, the loss of TH(+) cells in the nigrostriatal pathway, and a marked microgliosis. This parkinsonian rat striatum was examined at 26 days after the last rotenone injection, for quantification of microRNAs, miR-7, miR-34a, miR-26a, miR-132, miR-382, and Let7a, by qPCR. Parkinsonian rats presented a significant increase in miR-26a and miR-34a (1.5 and 2.2 fold, respectively, P?<?0.05), while miR-7 (0.5 fold, P?<?0.05) and Let7a were downregulated. This work reports for first time microRNAs aberrantly expressed in the striatum of rotenone-induced parkinsonian rats, suggesting that this dysregulation may contribute to PD pathogenesis. Beyond revealing new clues of neurodegeneration, our findings might prime further studies targeting miRNAs for neuroprotection or even for diagnosis proposal.  相似文献   
36.
This study evaluated the molecular characteristics of Rhodococcus equi isolates obtained from horses by a multiplex PCR assay that amplifies the vap gene family (vapA, -B, -C, -D, -E, -F, -G, and -H). A total of 180 R. equi isolates were studied from four different sources, namely healthy horse feces (112), soil (12), stalls (23), and clinical isolates (33) from horse-breeding farms. The technique was performed and confirmed by sequencing of amplified vap gene family controls. Thirty-two (17.8%) of the R. equi isolates were positive for the vapA gene and carried at least three other vap genes. All 147 isolates from equine feces, stalls, and soil failed to demonstrate any genes associated with virulence-inducing proteins. About 32 (97.0%) out of the 33 clinical equine isolates tested positive for the multiplex PCR assay for the vap gene family. They demonstrated six molecular profiles: 100% featured the vapA, vapD, and vapG genes, 86.6% vapF, 76.6% vapH, 43.3% vapC, 36.6% vapE, and none vapB. The most frequent molecular profile was vap A, -D, -F, G, and -H, where this profile was present in 37.5% of the strains. Moreover, there was no molecular epidemiological pattern for R. equi isolates that uniquely mapped to each horse-breeding farm studied. Our proposed technique allows the identification of eight members of the vap gene family (vapA, B, -C, -D, -E, -F, -G, and -H). It is a practical and efficient method of conducting clinical and epidemiological studies on R. equi isolates.  相似文献   
37.
38.
39.
A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.  相似文献   
40.
To evaluate the effects of inspiratory loading on blood flow of resting and exercising limbs in patients with diabetic autonomic neuropathy. Ten diabetic patients without cardiovascular autonomic neuropathy (DM), 10 patients with cardiovascular autonomic neuropathy (DM-CAN) and 10 healthy controls (C) were randomly assigned to inspiratory muscle load of 60% or 2% of maximal inspiratory pressure (PImax) for approximately 5 min, while resting calf blood flow (CBF) and exercising forearm blood flow (FBF) were measured. Reactive hyperemia was also evaluated. From the 20 diabetic patients initially allocated, 6 wore a continuous glucose monitoring system to evaluate the glucose levels during these two sessions (2%, placebo or 60%, inspiratory muscle metaboreflex). Mean age was 58 ± 8 years, and mean HbA1c, 7.8% (62 mmol/mol) (DM and DM-CAN). A PImax of 60% caused reduction of CBF in DM-CAN and DM (P<0.001), but not in C, whereas calf vascular resistance (CVR) increased in DM-CAN and DM (P<0.001), but not in C. The increase in FBF during forearm exercise was blunted during 60% of PImax in DM-CAN and DM, and augmented in C (P<0.001). Glucose levels decreased by 40 ± 18.8% (P<0.001) at 60%, but not at 2%, of PImax. A negative correlation was observed between reactive hyperemia and changes in CVR (Beta coefficient = -0.44, P = 0.034). Inspiratory muscle loading caused an exacerbation of the inspiratory muscle metaboreflex in patients with diabetes, regardless of the presence of neuropathy, but influenced by endothelial dysfunction. High-intensity exercise that recruits the diaphragm can abruptly reduce glucose levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号